首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ou MH  Tu CH  Tsai SC  Lee WT  Liu GC  Wang YM 《Inorganic chemistry》2006,45(1):244-254
Two novel derivatives of TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid), TTDA-BOM and TTDA-N'-BOM, each having a benzyloxymethyl group, were synthesized. (17)O NMR longitudinal and transverse relaxation rates and chemical shifts of aqueous solutions of their Gd(III) complexes were measured at variable temperature with a magnetic field strength of 9.4 T. The water exchange rate (k(ex)(298)) values for [Gd(TTDA-BOM)(H(2)O)](2-) (117 x 10(6) s(-1)) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) (131 x 10(6) s(-1)) are significantly higher than those of [Gd(DTPA)(H(2)O)](2-) (4.1 x 10(6) s(-1)) and [Gd(BOPTA)(H(2)O)](2-) (3.45 x 10(6) s(-1)). The rotational correlation time (tau) values for [Gd(TTDA-BOM)(H(2)O)](2-) (119 ps) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) (125 ps) are higher than those of [Gd(DTPA)(H(2)O)](2-) (103 ps) and [Gd(TTDA)(H(2)O)](2-) (104 ps). The stepwise stoichiometric binding constants of [Gd(TTDA-BOM)(H(2)O)](2)(-) and [Gd(TTDA-N'-BOM)(H(2)O)](2)(-) bound to HSA are obtained by ultrafiltration studies. Fluorescent probe displacement studies exhibit that [Gd(TTDA-BOM)(H(2)O)](2-) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) can displace dansylsarcosine from HSA with inhibition constants (K(i)) of 1900 and 1600 microM, respectively; however, they are not able to displace warfarin. These results indicate that [Gd(TTDA-BOM)(H(2)O)](2-) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) have a weak binding to site II on HSA. In addition, the mean bound relaxivity (r(1b)) and bound relaxivity (r(1)(b)) values for the [Gd(TTDA-BOM)(H(2)O)](2-)/HSA and [Gd(TTDA-N'-BOM)(H(2)O)](2-)/HSA adducts are obtained by ultrafiltration and relaxivity studies, respectively. The bound relaxivity of these adducts values are significantly higher than those of [Gd(BOPTA)(H(2)O)](2-)/HSA and [Gd(DTPA-BOM(3))(H(2)O)](2-)/HSA. These results also suggest that bound relaxivity is site dependent. In binding sites studies of Gd(III) chelates to HSA, a significant decrease of the relaxation rates (R(1obs)) was observed for the [Eu(TTDA-BOM)(H(2)O)](2-) complex which was added to the [Gd(TTDA-N'-BOM)(H(2)O)](2-)/HSA solution, and this indicated that these Gd(III) complexes share the same HSA binding site. Finally, as measured by the Zn(II) transmetalation process, the kinetic stability of these Gd(III) complexes are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)].  相似文献   

2.
For this study, the N'-monoamide derivatives of TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid), N'-methylamide (TTDA-MA), N'-benzylamide (TTDA-BA), and N'-2-methoxybenzylamide (TTDA-MOBA), were synthesized. Their protonation constants and stability constants (log K(ML)'s) formed with Ca(2+), Zn(2+), Cu(2+), and Gd(3+) were determined by potentiometric titration in 0.10 M Me(4)NCl at 25.0 +/- 0.1 degrees C. The relaxivity values of [Gd(TTDA-MA)](-), [Gd(TTDA-BA)](-), and [Gd(TTDA-MOBA)](-) remained constant with respect to pH changes over the range 4.5-12.0. The (17)O NMR chemical shift of H(2)O induced by [Dy(TTDA-MA)(H(2)O)](-) at pH 6.80 showed 0.9 inner-sphere water molecules. Water proton relaxivity values for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) at 37.0 +/- 0.1 degrees C and 20 MHz are 3.89, 4.21, and 4.25, respectively. The water-exchange lifetime (tau(M)) and rotational correlation time (tau(R)) of [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are obtained from reduced the (17)O relaxation rate and chemical shifts of H(2)(17)O. The (2)H NMR longitudinal relaxation rates of the deuterated diamagnetic lanthanum complexes for the rotational correlation time were also thoroughly investigated. The water-exchange rates (K(298)(ex) for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are lower than that of [Gd(TTDA)(H(2)O)](2)(-) but significantly higher than those of [Gd(DTPA)(H(2)O)](2)(-) and [Gd(DTPA-BMA)(H(2)O)]. The rotational correlation times for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) are significantly longer than those of [Gd(TTDA)(H(2)O)](2)(-) and [Gd(DTPA)(H(2)O)](2)(-) complexes. The marked increase of the relaxivity of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) results mainly from their longer rotational correlation time. The noncovalent interaction between human serum albumin (HSA) and [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) complexes containing a hydrophobic substituent was investigated by measuring the water proton relaxation rate of the aqueous solutions. The binding association constant (K(A)) values are 1.0 +/- 0.2 x 10(3) and 1.3 +/- 0.2 x 10(3) M(-1) for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-), which indicates a stronger interaction of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) with HSA.  相似文献   

3.
To confirm the observation that [Gd(ttda)] derivatives have a significantly shorter residence time τM of the coordinated H2O molecule than [Gd(dtpa)], four new C‐functionalized [Gd(ttda)] complexes, [Gd(4‐Me‐ttda)] ( 1 ), [Gd(4‐Ph‐ttda)] ( 2 ), [Gd(9‐Me‐ttda)] ( 3 ), and [Gd(9‐Ph‐ttda)] ( 4 ), were prepared and characterized (H5ttda=3,6,10‐tris(carboxymethyl)‐3,6,10‐triazadodecanedioic acid; H5dtpa=3,6,9‐tris(carboxymethyl)‐3,6,9‐triazaundecanedioic acid). The temperature dependence of the proton relaxivity for these complexes at 0.47 T and of the 17O transverse relaxation rate of H217O at 7.05 T confirm that the proton relaxivity is not limited by the H2O‐exchange rate. The residence time of the H2O molecules in the first coordination sphere of the gadolinium complexes at 310 K, as calculated from 17O‐NMR data, is 13, 43, 2.9, and 56 ns for 1, 2, 3 , and 4 , respectively. At 310 K, the longitudinal relaxivity of 2 is higher than for the parent compound [Gd(ttda)] and the other complexes of the series. The stability of the new compounds was studied by transmetallation with Zn2+ ions. All the new complexes are more stable than the parent compound [Gd(ttda)].  相似文献   

4.
With the objective of tuning the lipophilicity of ligands and maintaining the neutrality and stability of Gd(III) chelate, we designed and synthesized two bis(amide) derivatives of TTDA, TTDA-BMA and TTDA-BBA, and a mono(amide) derivative, TTDA-N-MOBA. The ligand protonation constants and complex stability constants for various metal ions were determined in this study. The identification of the microscopic sites of protonation of the amide ligand by 1H NMR titrations show that the first protonation site occurs on the central nitrogen atom. The values of the stability constant of TTDA-mono and bis(amide) complex are significantly lower than those of TTDA and DTPA, but the selectivity constants of these ligands for Gd(III) over Zn(II) and Cu(II) are slightly higher than those of TTDA and DTPA. On the basis of the water-exchange rate values available for [Gd(TTDA-BMA)(H2O)], [Gd(TTDA-BBA)(H2O)] and [Gd(TTDA-N-MOBA)(H2O)]-, we can state that, in general, the replacement of one carboxylate group by an amide group decreases the water-exchange rate of the gadolinium(III) complexes by a factor of about three to five. The decrease in the exchange rate is explained in terms of a decreased steric crowding and charge effect around the metal ion when carboxylates are replaced by an amide group. In addition, to support the HSA protein binding studies of lipophilic [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] complexes, further protein-complex binding was studied by ultrafiltration and relaxivity studies. The binding constants (KA) of [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] are 8.6 x 10(2) and 1.0 x 10(4) dm3 mol(-1), respectively. The bound relaxivities (r1(b)) are 51.8 and 52 dm3 mmol(-1) s(-1), respectively. The KA value of [Gd(TTDA-BBA)(H2O)] is similar to that of MS-325 and indicates a stronger interaction of [Gd(TTDA-BBA)(H2O)] with HSA.  相似文献   

5.
The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K(A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.  相似文献   

6.
The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight.  相似文献   

7.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

8.
A ditopic DTPA monoamide derivative containing an 8-hydroxyquinoline moiety was synthesized and the corresponding gadolinium(iii) complex ([Gd(H5)(H(2)O)](-)) was prepared. After adding aluminum(iii), the 8-hydroxyquinoline part self-assembled into a heteropolymetallic triscomplex [(Gd5)(3)Al(H(2)O)(3)](3-). The magnetic and optical properties of this metallostar compound were investigated in order to classify it as a potential in vitro bimodal contrast agent. The proton nuclear magnetic relaxation dispersion measurements indicated that the relaxivity r(1) of [Gd(H5)(H(2)O)](-) and [(Gd5)(3)Al(H(2)O)(3)](3-) at 20 MHz and 310 K equaled 6.17 s(-1) mM(-1) and 10.9 s(-1) mM(-1) per Gd(iii) ion respectively. This corresponds to a relaxivity value of 32.7 s(-1) mM(-1) for the supramolecular complex containing three Gd(iii) ions. The high relaxivity value is prominently caused by an increase of the rotational tumbling time τ(R) by a factor of 2.7 and 5.5 respectively, in comparison with the commercially used MRI contrast agent Gd(iii)-DTPA (Magnevist?). Furthermore, upon UV irradiation, [(Gd5)(3)Al(H(2)O)(3)](3-) exposes green broad-band emission with a maximum at 543 nm. Regarding the high relaxivity and the photophysical properties of the [(Gd5)(3)Al(H(2)O)(3)](3-) metallostar compound, it can be considered as a lead compound for in vitro bimodal applications.  相似文献   

9.
In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements. The water exchange rates, k(ex)(298), are 8.0 x 10(7) s(-1), 6.1 x 10(7) s(-1) and 5.7 x 10(7) s(-1) for [Gd(DTTA-Nprop)(H2O)]2-, [Gd(DO3A-Nprop)(H2O)]- and [Gd(EPTPA-BAA)(H2O)], respectively, all in the narrow optimal range to attain maximum proton relaxivities, provided the other parameters (electronic relaxation and rotation) are also optimized. The substitution of an acetate with a propionate arm in DTPA5- or DOTA4- induces increased steric compression around the water binding site and thus leads to an accelerated water exchange on the Gd(III) complex. The k(ex) values on the propionate complexes are, however, lower than those obtained for [Gd(EPTPA)(H2O)]2- and [Gd(TRITA)(H2O)]- which contain one additional CH(2) unit in the amine backbone as compared to the parent [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-. In addition to their optimal water exchange rate, [Gd(DTTA-Nprop)(H2O)]2- has, and [Gd(DO3A-Nprop)(H2O)]- is expected to have sufficient thermodynamic stability. These properties together make them prime candidates for the development of high relaxivity, macromolecular MRI contrast agents.  相似文献   

10.
A new bifunctional octa-coordinating ligand containing an aminobenzyl moiety, DO3APABn (H4DO3APABn = 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid}), has been synthesized. Its lanthanide(III) complexes contain one water molecule in the first coordination sphere. The high-resolution 1H and 31P spectra of [Eu(H2O) (DO3APABn)]- show that the twisted square-antiprismatic form of the complexes is more abundant in respect to the corresponding Eu(III)-DOTA complex. The 1H NMRD and variable-temperature 17O relaxation measurements of [Gd(H2O)(DO3APABn)]- show that the water residence time is short (298tauM = 16 ns) and falls into the optimal range predicted by theory for the attainment of high relaxivities once this complex would be endowed by a slow tumbling rate. The relaxivity (298r1 = 6.7 mM(-1) s(-1) at 10 MHz) is higher than expected as a consequence of a significant contribution from the second hydration sphere. These results prompt the use of [Gd(H2O)(DO3APABn)]- as a building block for the set-up of highly efficient macromolecular MRI contrast agents.  相似文献   

11.
A tetranuclear gadolinium(III) complex, [Gd4(H2O)8], of DO3A appended onto the pentaerythrityl framework was synthesized to improve the water proton relaxivity for MRI application. The longitudinal relaxivity of [Gd4(H2O)8] is 28.13 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6) which is 5.86 times higher than that of [Gd(DO3A)(H2O)2]. The relaxivity is based on "molecular" relaxivity of the tetramer and the r1p value is "7 per Gd". The high relaxivity of the tetramer is the result of the decrease in the rotational correlation (tauR) and the presence of eight inner-sphere water molecules (q=8). The complex exhibits pH-dependent longitudinal relaxivity, and the high relaxivity both at low and high pH (r1p=28.13 mM-1 s-1 at pH 5.6 and 16.52 mM-1 s-1 at pH 9.5) indicates that it could be used as a pH-responsive MRI contrast agent. The transverse relaxivity of the tetramer is 129.97 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6), and the r2p/r1p ratio of 4.6 shows that it could be used as a T2-weighted contrast agent.  相似文献   

12.
Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).  相似文献   

13.
A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.  相似文献   

14.
A derivative of H5ttda (=3,6,10‐tris(carboxymethyl)‐3,6,10‐triazadodecanedioic acid=N‐{2‐[bis(carboxymethyl)amino]ethyl}‐N‐{3‐[bis(carboxymethyl)amino]propyl}glycine), H5[(S)‐4‐Bz‐ttda] (=(4S)‐4‐benzyl‐3,6,10‐tris(carboxymethyl)‐3,6,10‐triazadodecanedioic acid=N‐{(2S)‐2‐[bis(carboxymethyl)amino]‐3‐phenylpropyl}‐N‐{3‐[bis(carboxymethyl)amino]propyl}glycine; 1 ) carrying a benzyl group was synthesized and characterized. The stability constants of the complexes formed with Ca2+, Zn2+, Cu2+, and Gd3+ were determined by potentiometric methods at 25.0±0.1° and 0.1M ionic strength in Me4NNO3. The observed water proton relaxivity value of [Gd{(S)‐4‐Bz‐ttda}]2− was constant with respect to pH changes over the range pH 4.5–12.0. From the 17O‐NMR chemical shift of H2O induced by [Dy{(S)‐4‐Bz‐ttda}]2− at pH 6.80, the presence of 0.9 inner‐sphere water molecules was deduced. The water proton spin‐lattice relaxation rate for [Gd{(S)‐4‐Bz‐ttda}]2− at 37.0±0.1° and 20 MHz was 4.90±0.05 mM −1 s−1. The EPR transverse electronic relaxation rate and 17O‐NMR transverse‐relaxation time for the exchange lifetime of the coordinated H2O molecule (τM), and 2H‐NMR longitudinal‐relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time (τR) were thoroughly investigated, and the results were compared with those previously reported for the other lanthanide(III) complexes. The exchange lifetime (τM) for [Gd{(S)‐4‐Bz‐ttda}]2− (2.3±1.3 ns) was significantly shorter than that of the [Gd(dtpa)(H2O)]2− complex (dtpa=diethylenetriaminepentaacetic acid). The rotational correlation time τR for [Gd{(S)‐4‐Bz‐ttda}]2− (70±6 ps) was slightly longer than that of the [Gd(dtpa)(H2O)]2− complex. The marked increase of relaxivity of [Gd{(S)‐4‐Bz‐ttda}]2− mainly resulted from its longer rotational time rather than from its fast water‐exchange rate. The noncovalent interaction between human serum albumin (HSA) and the [Gd{(S)‐4‐Bz‐ttda}]2− complex containing the hydrophobic substituent was investigated by measuring the solvent proton relaxation rate of the aqueous solutions. The association constant (KA) was less than 100 M −1, indicating a weaker interaction of [Gd{(S)‐4‐Bz‐ttda}]2− with HSA.  相似文献   

15.
In this study, we have developed two new L-tryptophan based contrast agents [Gd(Try-TTDA)(H(2)O)](2-) and [Gd(Try-ac-DOTA)(H(2)O)](-). Upon addition of Cu(II) to [Gd(Try-TTDA)(H(2)O)](2-), significant increases in the relaxivity (r(1)) and hydration number of [Gd(Try-TTDA)(H(2)O)](2-) were observed. However, it only induced a minute increase in the relaxivity (r(1)) in the case of [Gd(Try-ac-DOTA)(H(2)O)](-). Furthermore, the interaction of Cu(II) with the indole ring of Gd(III) complexes was explored by measuring the intrinsic fluorescence of the tryptophan of the Gd(III) complex. With the addition of one equivalent of Cu(II) to [Gd(Try-TTDA)(H(2)O)](2-) the indole fluorescence was completely quenched. Moreover, the [Gd(Try-TTDA)(H(2)O)](2-) complex shows excellent selectivity towards Cu(II) over other metal ions (Cu(II) > La(III) > Mg(II)). Importantly, the significant signal intensity (2073 ± 67) for in vitro MR imaging using [Gd(Try-TTDA)(H(2)O)](2-) in the presence of Cu(II) implicates that this new smart contrast agent ([Gd(Try-TTDA)(H(2)O)](2-)) can serve as a Cu(II) sensor for MR imaging.  相似文献   

16.
The ion-nuclear distance of Gd(III) to a coordinated water proton, r(Gd)(-)(H), is central to the understanding of the efficacy of gadolinium-based MRI contrast agents. The dipolar relaxation mechanism operative for contrast agents has a 1/r(6) dependence. Estimates in the literature for this distance span 0.8 A (2.5-3.3 A). This study describes a direct determination of r(Gd)(-)(H) using the anisotropic hyperfine constant T( perpendicular ) determined from pulsed ENDOR spectra. Five Gd(III) complexes were examined: [Gd(H(2)O)(8)](3+), [Gd(DTPA)(H(2)O)](2)(-), [Gd(BOPTA)(H(2)O)](2)(-), MS-325, and [Gd(HP-DO3A)(H(2)O)]. The distance, r(Gd)(-)(H), was the same within error for all five complexes: 3.1 +/- 0.1 A. These distance estimates should aid in the design of new contrast agents, and in the interpretation of other molecular factors influencing relaxivity.  相似文献   

17.
A novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N',N'-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced. The water exchange rate, k(ex)(298)=9.0+/-3.0 s(-1) is around twice as high as k(ex)(298) of the commercial [Gd(DTPA)(H(2)O)](2-) and comparable to those on analogous Gd(3+)-DTTA chelates. Despite the relatively small size of the complex, the rotational dynamics had to be described with the Lipari-Szabo approach, by separating global and local motions. The difference between the local and global rotational correlation times, tau(lO)(298)=170+/-10 ps and tau(gO)(298)=540+/-100 ps respectively, shows that [Gd(3)L(H(2)O)(6)](3-) is not fully rigid; its flexibility originates from the CH(2) linker between the benzene core and the poly(amino carboxylate) moiety. As a consequence of the two inner-sphere water molecules per Gd(3+), their close to optimal exchange rate and the appropriate size and limited flexibility of the molecule, [Gd(3)L(H(2)O)(6)](3-) has remarkable proton relaxivities when compared with commercial contrast agents, particularly at high magnetic fields (r(1)=21.6, 17.0 and 10.7 mM(-1)s(-1) at 60, 200 and 400 MHz respectively, at 25 degrees C; r(1) is the paramagnetic enhancement of the longitudinal water proton relaxation rate, referred to 1 mM concentration of Gd(3+)).  相似文献   

18.
A new pyridine-containing ligand, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(4)L), has been designed for the complexation of lanthanide ions. (1)H and (13)C NMR studies in D(2)O solutions show octadentate binding of the ligand to the Ln(III) ions through the nitrogen atoms of two amine groups, the oxygen atoms of four carboxylates, and the two nitrogen atoms of the pyridine rings. Luminescence measurements demonstrate that both Eu(III) and Tb(III) complexes are nine-coordinate, whereby a water molecule completes the Ln(III) coordination sphere. Ligand L can sensitize both the Eu(III) and Tb(III) luminescence; however, the quantum yields of the Eu(III)- and Tb(III)-centered luminescence remain modest. This is explained in terms of energy differences between the singlet and triplet states on the one hand, and between the 0-phonon transition of the triplet state and the excited metal ion states on the other. The anionic [Ln(L)(H2O)]- complexes (Ln=La, Pr, and Gd) were also characterized by theoretical calculations both in vacuo and in aqueous solution (PCM model) at the HF level by means of the 3-21G* basis set for the ligand atoms and a 46+4 f(n) effective core potential for the lanthanides. The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as demonstrated by paramagnetic NMR measurements (lanthanide-induced shifts and relaxation-rate enhancements). Data sets obtained from variable-temperature (17)O NMR at 7.05 T and variable-temperature (1)H nuclear magnetic relaxation dispersion (NMRD) on the Gd(III) complex were fitted simultaneously to give insight into the parameters that govern the water (1)H relaxivity. The water exchange rate (k(298)(ex)=5.0 x 10(6) s(-1)) is slightly faster than in [Gd(dota)(H2O)]- (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). Fast rotation limits the relaxivity under the usual MRI conditions.  相似文献   

19.
Three novel GdDO3A-type bismacrocyclic complexes, conjugated to Ca (2+) chelating moieties like ethylenediaminetetraacetic acid and diethylenetriamine pentaacetic acid bisamides, were synthesized as potential "smart" magnetic resonance imaging contrast agents. Their sensitivity toward Ca (2+) was studied by relaxometric titrations. A maximum relaxivity increase of 15, 6, and 32% was observed upon Ca (2+) binding for Gd 2L (1), Gd 2L (2), and Gd 2L (3), respectively (L (1) = N, N-bis{1-[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]eth-2-yl}aminoacetic acid; L (2) = N, N-bis[1-({[({alpha-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]- p-tolylamino}carbonyl)methyl]-(carboxymethyl)}amino)eth-2-yl]aminoacetic acid; L (3) = 1,2-bis[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}(carboxymethyl)amino]ethane). The apparent association constants are log K A = 3.6 +/- 0.1 for Gd 2L (1) and log K A = 3.4 +/- 0.1 for Gd 2L (3). For the interaction between Mg (2+) and Gd 2L (1), log K A = 2.7 +/- 0.1 has been determined, while no relaxivity change was detected with Gd 2L (3). Luminescence lifetime measurements on the Eu (3+) complexes in the absence of Ca (2+) gave hydration numbers of q = 0.9 (Eu 2L (1)), 0.7 (Eu 2L (2)), and 1.3 (Eu 2L (3)). The parameters influencing proton relaxivity of the Gd (3+) complexes were assessed by a combined nuclear magnetic relaxation dispersion (NMRD) and (17)O NMR study. Water exchange is relatively slow on Gd 2L (1) and Gd 2L (2) ( k ex (298) = 0.5 and 0.8 x 10 (6) s (-1)), while it is faster on Gd 2L (3) (k ex (298) = 80 x 10 (6) s (-1)); in any case, it is not sensitive to the presence of Ca (2+). The rotational correlation time, tau R (298), differs for the three complexes and reflects their rigidity. Due to the benzene linker, the Gd 2L (2) complex is remarkably rigid, with a correspondingly high relaxivity despite the low hydration number ( r 1 = 10.2 mM (-1)s (-1) at 60 MHz, 298 K). On the basis of all available experimental data from luminescence, (17)O NMR, and NMRD studies on the Eu (3+) and Gd (3+) complexes of L (1) and L (3) in the absence and in the presence of Ca (2+), we conclude that the relaxivity increase observed upon Ca (2+) addition can be mainly ascribed to the increase in the hydration number, and, to a smaller extent, to the Ca (2+)-induced rigidification of the complex.  相似文献   

20.
Taking advantage of the Curie contribution to the relaxation of the protons in the Tb(III) complex, and the quadrupolar relaxation of the 17O and 2H nuclei on the Eu(III) complex, the effect of the internal motion of the water molecule bound to [Ln(DOTAM)(H2O)]3+ complexes was quantified. The determination of the quadrupolar coupling constant of the bound water oxygen chi(Omicron)(1 + eta(Omicron)2/3)1/2 = 5.2 +/- 0.5 MHz allows a new analysis of the 17O and 1H NMR data of the [Gd(DOTA)(H2O)]- complex with different rotational correlation times for the Gd(III)-O(water) and Gd(III)-H(water) vectors. The ratio of the rotational correlation times for the Ln(III)-H(water) vector and the overall rotational correlation time is calculated tau(RH)/tau(RO) = 0.65 +/- 0.2. This could have negative consequences on the water proton relaxivity, which we discuss in particular for macromolecular systems. It appears that the final effect is actually attenuated and should be around 10% for such large systems undergoing local motion of the chelating groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号