首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method is firstly presented for field and rapid analysis of short-chain aliphatic amines in water as their pentafluorobenzaldehyde (PFBAY) derivative using solid-phase microextraction (SPME) and portable GC. In the proposed method, short-chain aliphatic amines in water rapidly reacted with PFBAY, and then were headspace extracted and concentrated by SPME. The formed amines derivatives were analyzed by portable GC. The SPME parameters of fiber selection, extraction temperature, extraction time, and stirring rate were studied. The method validations including LOD, recovery, precision, and linearity were studied. It was found that the proposed method required the whole analysis time 22 min, and provided low LOD of 1.2-4.6 ng/mL, good recovery of 91-106%, good precision of RSD value 3.5-9.3%, and linear range 20.0-500 ng/mL (r(2) >0.99). The obtained results demonstrated that the SPME-portable GC is a simple, rapid, and efficient method for the field analysis of short-chain aliphatic amines. Finally, the proposed method was further applied to the quantification of ethylamine, propylamine, and butylamine in environmental water.  相似文献   

2.
6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein (SAMF), a new fluorescein-based amine-reactive fluorescent probe was well designed, synthesized and used as a pre-column derivatizing reagent for the determination of aliphatic amines in HPLC. It exhibited relatively pH-independent fluorescence (pH 4-9) and excellent photostability. The derivatization was performed at room temperature in 6min. On a C18 column, the derivatives of SAMF with eight aliphatic amines were baseline separated in 28 min with a mobile phase of methanol-water (57:43, v/v) containing 10 mmol l(-1) pH 5.0, H3Cit3-NaOH buffer. With fluorescent detection at lambda(ex)/lambda(em) = 484/516 nm, the detection limit could reach 2-320 fmol (signal-to-noise = 3), which was equivalent to or better than the detection limits obtained from other analytical methods of aliphatic amines. The proposed method has been applied to the determination of the aliphatic amines in environmental and food samples such as lake water, red wine, white wine, and cheese with satisfying recoveries varying from 95 to 106%.  相似文献   

3.
Headspace solid-phase microextraction (SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of haloacetic acids (HAAs) in water. The method involves derivatization of the acids to their ethyl esters using sulphuric acid and ethanol after evaporation, followed by headspace SPME with a polydimethylsiloxane fibre and gas chromatography-ion trap mass spectrometry (GC-IT-MS). The derivatization procedure was optimized: maximum sensitivity was obtained with esterification for 10 min at 50 degrees C in 30 microl of sulphuric acid and 40 microl of ethanol. The headspace SPME conditions were also optimized and good sensitivity was obtained at a sampling temperature of 25 degrees C, an absorption time of 10 min, the addition of 0.1 g of anhydrous sodium sulfate and a desorption time of 2 min. Good precision (RSD lower than 10%) and detection limits in the ng l(-1) range (from 10 to 200 ng l(-1)) were obtained for all the compounds. The optimized procedure was applied to the analysis of HAAs in tap water and the results obtained by standard addition agreed with those of EPA method 552.2, whereas discrepancies due to matrix interferences were observed using external calibration. Consequently, headspace SPME-GC-IT-MS with standard addition is recommended for the analysis of these compounds in drinking water.  相似文献   

4.
李秀娟  龚淑玲  王巍  曾昭睿 《色谱》2004,22(5):472-475
采用溶胶-凝胶方法制备了25,27-二羟基-26,28-(1′,10′-二氧代-4′,7′-二氮杂-3′,8′-二氧代亚辛基)-对-特丁基-杯[4]芳烃/羟基硅油(胺桥杯[4]/OH-TSO)固相微萃取(SPME)探头,通过对脂肪胺和芳胺的分析研究了它的特性。该探头具有耐高温、抗溶剂冲洗、使用寿命长、重现性好等特点。杯环上极性胺桥的引入增强了涂层的极性,因而在不需衍生的情况下对脂肪胺和芳胺都具有很好的萃取能力,表现出对胺类化合物的特殊选择性。脂肪胺的检出限为0.19~39.51 μg/L,线性范围达3个数  相似文献   

5.
This study evaluates solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to determine trace levels of amphetamine and methamphetamine in serum. Headspace post-derivatization in a laboratory-made design with heptafluorobutyric anhydride vapor following SPME was compared with that without derivatization SPME. The SPME experimental procedures to extract amphetamine and methamphetamine in serum were optimized with a relatively non-polar poly(dimethylsiloxane) coated fiber at pH 9.5, extraction time for 40 min and desorption at 260 degrees C for 2 min. Experimental results indicate that the concentration of the serum matrix diluted to a quarter of original (1:3) ratio by using one volume of buffer solution of boric acid mixed with sodium hydroxide and two volumes of water improves the extraction efficiency. Headspace derivatization following SPME was performed by using 6 microl 20% (v/v) heptafluorobutyric anhydride ethyl acetate solution at an oil bath temperature of 270 degrees C for 10 s. The precision was below 7% for analysis for without derivatization and below 17% for headspace derivatization. Detection limits were obtained at the ng/l level, one order better obtained in headspace derivatization than those achieved without derivatization. The feasibility of applying the methods to determine amphetamine and methamphetamine in real samples was examined by analyzing serum samples from methamphetamine abused suspects. Concentrations of the amphetamine and methamphetamine ranged from 6.0 microg/l (amphetamine) to 77 microg/l (methamphetamine) in serum.  相似文献   

6.
Precolumn preconcentration and derivatization on solid sorbents (Bond Elut C18 solid-phase extraction cartridges) of low-molecular-mass aliphatic amines in water samples have been performed using dansyl chloride (Dns-Cl) as derivatization reagent. Conditions for analyte preconcentration and derivatization such as volume sample, reagent concentration, time, pH and temperature reaction were optimised. On the basis of these studies a rapid and sensitive method for screening of aliphatic amines in waters is presented. Up to volumes of 5 ml, samples are drawn through the sorbent, the analytes retained are dansylated at basic pH, at 100 degrees C for 10 min or 85 degrees C for 15 min. The derivatized analytes are desorbed with 0.5 ml of acetonitrile. Twenty microl of the collected extracts are chromatographed in a Hypersyl ODS C18 column using an acetonitrile-imidazole (pH 7) gradient for elution. Seven amines and ammonium were separated within 9 min. The Dns derivatives were monitored at 333 nm with UV detection and at lambda(excitation) = 350 nm and lambda(emission) = 530 nm with fluorescence detection. The different signals are compared. Dynamic ranges from 10 to 250 microg/l and limits of detection at the microgram-per-litre level and relative standard deviations from 2 to 15% were obtained for all the amines. The total analysis time (sample treatment plus chromatography) was less than 25 min. The method was applied to determination and screening analysis of these analytes in real environmental water samples.  相似文献   

7.
A study of organic compounds imparting sweet and buttery odor problems in the Llobregat River (northeast Spain) and in treated water was conducted. Solid-phase microextraction (SPME), gas chromatography-olfactometry, and flavor profile analysis (FPA) were used as analytical methodologies to identify the compound responsible for odor incidents. 2,3-Butanedione (diacetyl) with a concentration range of 0.90-26 microg/l in river water samples entering the water treatment plant was identified as the compound causing the odor events. Flavor profile analysis establishes 0.05 microg/l as its odor threshold concentration (OTC) in water, with an odor recognition concentration of 0.20 microg/l. The analyses were carried out with SPME-GC-MS and parameters affecting SPME extraction such as selection of the fiber (carboxen-polydimethylsiloxane), extraction time (30 min), temperature (60 degrees C), and ionic strength were evaluated. Quality parameters of the optimized method gives good linearity (r2 > 0.999), a limit of detection (0.08 microg/l) similar to the OTC of the compound, and good reproducibility (R.S.D. < 20%). The SPME method was applied to identify the compound causing the odor.  相似文献   

8.
Li JS  Wang H  Cao LW  Zhang HS 《Talanta》2006,69(5):1190-1199
A novel fluorescent-activated ester, 8-phenyl-(4-oxy-acetic acid N-hydroxysuccinimidyl ester)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (TMPAB-OSu) has been designed and synthesized for amine labeling in HPLC. Being used 11 aliphatic amines as the models, the derivatization conditions were optimized. In 0.2 mol/l borate buffer (pH 8.8), amines reacted with TMPAB-OSu at 30 °C to form the derivatives in 10 min. The fluorescent quantum yield of TMPAB-OSu and its amine derivatives are high even compared with fluorescein. The separation of these amine derivatives was achieved with a C8 column and gradient elution by using 0.1 mol/l sodium acetate buffer (pH 5.0) and methanol. With fluorescence detection at an emission wavelength of 509 nm and an excitation wavelength of 497 nm, the detection limits of aliphatic amines were 2–18 fmol, at a signal-to-noise ratio of 3:1. The proposed TMPAB-OSu-based HPLC method has been applied to the analysis of urine samples of health, hepatic and renal patients and lake water. Recoveries from different matrices are from 96 to 104%, depending on the sample investigated.  相似文献   

9.
Bond Elut C18 solid-phase extraction cartridges were used for preconcentration and pre-column derivatization with 3,5-dinitrobenzoyl chloride (DNB) of aliphatic amines in water. Conditions for analyte preconcentration and derivatization (including the volume of sample, concentration of reagent, time of reaction and pH) were investigated, using ethylamine, isopropylamine and dimethylamine as model compounds. On the basis of these studies, a rapid and sensitive method for the determination of aliphatic amines in water is presented. The analytes are retained and purified on the cartridges and then derivatized and desorbed by drawing in succession the DNB solution and acetonitrile. The collected extracts are subsequently chromatographed in a Hypersil ODS C18 column using acetonitrile-water for elution. The DNB derivatives are monitored at 230 nm. The method provides satisfactory reproducibility and linearity within the 0.050-1.0 mg l(-1) concentration interval, the limits of detection being 2-5 microg l(-1). Analyte recoveries were in the 70-102% range, whereas the conversion yields compared with those observed for the solution derivatization were in the 79-107% range. The total analysis time (sample treatment plus chromatography) was about 15 min. The method was applied to the determination of ethylamine, isopropylamine and dimethylamine in tap and river waters.  相似文献   

10.
CuI-catalyzed coupling reaction of electron-deficient aryl iodides with aliphatic primary amines occurs at 40 degrees C under the promotion of N-methylglycine. Using l-proline as the promoter, coupling reaction of aryl iodides or aryl bromides with aliphatic primary amines, aliphatic cyclic secondary amines, or electron-rich primary arylamines proceeds at 60-90 degrees C; an intramolecular coupling reaction between aryl chloride and primary amine moieties gives indoline at 70 degrees C; coupling reaction of aryl iodides with indole, pyrrole, carbazole, imidazole, or pyrazole can be carried out at 75-90 degrees C; and coupling reaction of electron-deficient aryl bromides with imidazole or pyrazole occurs at 60-90 degrees C to provide the corresponding N-aryl products in good to excellent yields. In addition, N,N-dimethylglycine promotes the coupling reaction of electron-rich aryl bromides with imidazole or pyrazole to afford the corresponding N-aryl imidazoles or pyrazoles at 110 degrees C. The possible action of amino acids in these coupling reactions is discussed.  相似文献   

11.
固相微萃取-气相色谱/质谱分析栀子花的头香成分   总被引:30,自引:0,他引:30  
刘百战  高芸 《色谱》2000,18(5):452-455
 分别用固相微萃取和动态顶空法分离栀子鲜花的头香成分,用GC/MS技术分析鉴定,并用GC/MS总离子流色谱峰的峰面积进行归一化定量。在固相微萃取方法中,共鉴定了54种化学成分,占总峰面积的99.98%。主要成分(质量分数)依次为金合欢烯(64.86%)、罗勒烯(29.33%)、芳樟醇(2.74%)、惕各酸顺式叶醇酯(1.34%)和苯甲酸甲酯(0.25%)等。经与动态顶空法的分析结果比较发现,固相微萃取法不仅操作简便,而且具有较高的采样灵敏度,获得的化学成分的信息量多于动态顶空法。  相似文献   

12.
Precolumn derivatization of six short‐chain aliphatic amines by a near‐infrared dye, 1‐(ε‐succinimydyl‐hexanoate)‐1′‐methyl‐3,3,3′,3′‐tetramethyl‐indocarbocyanine‐5,5′‐ disulfonate potassium (MeCy5‐OSu), followed by MEKC–CE–LIF detection has been developed as a method for the determination of aliphatic amines in environmental water and food. Optimum derivatization was operated nicely in pH 9.0 borate buffer at 20°C for 30 min. Well separated peaks were observed with a pH 9.5 BGE containing 10 mmol L?1 phosphoric acid, 20 mmol L?1 SDS, and 7% methanol buffered with 1.0 mol L?1 NaOH. The separation procedure was rapidly achieved within 11 min and the matrix interferences could be effectively eliminated. A linear calibration graph was obtained for 5–200 nmol L?1 analytes with a correlation coefficient in the range 0.9933–0.9995 for amines. This method was successfully utilized to determine aliphatic amines in lake, sewage water, and red wine with recoveries ranging from 96.4 to 105% and the RSDs ranging from 0.9 to 2.9%. Near‐infrared, LIF‐detector‐compatible MeCy5‐OSu was proved suitable for the accurate, sensitive, and rapid separation and determination of aliphatic amines in water and food samples.  相似文献   

13.
 采用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙酸(BCAA)为柱前衍生化试剂,在Hypersil BDS-C18色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性。以乙腈为溶剂,1-乙基-3-(3-二甲氨基丙基)环己碳二亚胺(EDAC)为缩合剂,在50 ℃条件下衍生反应15 min后获得稳定的荧光产物。激发波长和发射波长分别为333 nm和390 nm。采用大气压化学电离源(APCI)的正离子模式,实现了土壤和污水中脂肪胺的定性及其含量的测定。脂肪胺的线性相关系数大于0.9993,检测限为12~28 fmol。  相似文献   

14.
The objective this study was to compare the official EU liquid-liquid extraction (LLE) method with solid-phase microextraction (SPME) for the analysis of compounds migrating from cross-linked polyethylene into water. A medium polarity polydimethylsiloxane/divinylbenzene (PDMS/DVB) 65 microm fibre proved most efficient for the SPME extraction of nine test compounds and the optimum extraction conditions were an immersion time of 30 min with heating to 60 degrees C. The repeatability of the SPME method was variable: RSD values ranged from approximately 4-18% depending on the individual compound, though correlation coefficients were greater than 0.999 in the concentration range 0.5-1000 microg/l. It would also seem that there is some competition amongst different compounds for sites on the fibre and this is a potential drawback of SPME when applied to unknown samples. However, when applied to water samples in contact with polyethylene, SPME proved to be immensely more sensitive and to have a greater extraction range than LLE. These factors coupled with the rapidity and ease of use of SPME mean that it could be developed for use as an alternative to the existing official method or as an alert system in the routine analysis of materials used to transport domestic water.  相似文献   

15.
A method for the determination of geosmin and 2-methylisoborneol (MIB) in water by solid-phase microextraction (SPME) is presented. Various SPME fibre chemistries have been compared for their efficiency in extracting MIB from water. Extraction conditions including the extraction time and temperature have been optimised. A 30 ml water sample is extracted for 20 min at 60 degrees C using a divinylbenzene fibre, and the extract analysed by gas chromatography with ion-trap mass spectrometry detection. d5-Geosmin and d3-MIB are added as internal standards to compensate for any variability in the SPME process which is not carried out to equilibrium. Chemical ionisation, using acetonitrile as the reagent gas, was found to give superior sensitivity to electron impact ionisation (EI) for the detection of MIB. EI was used as the ionisation mode for detection of geosmin. The method shows good linearity over the concentration range 5-40 ng l-1 and gives detection limits of 1 ng l-1 for both geosmin and MIB. Recovery (93-110%) and precision (3-12%) over this concentration range, for both raw and treated drinking waters, are comparable to currently employed methods such as closed-loop stripping analysis (CLSA). The method offers the advantage of being simple to use, with much shorter analysis times in comparison to CLSA.  相似文献   

16.
A method for trace analysis of a wide range of aldehydes (saturated/unsaturated aliphatic, aromatic aldehydes, including hydroxylated species, and dialdehydes) in an aqueous solution was optimized. An evaluation of three solid-phase microextraction (SPME) techniques (headspace, liquid-phase, and on-fiber derivatization) with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) aldehyde derivatization was performed focusing on the optimization of the main extraction parameters (temperature and time). The optimized method employed the liquid-phase SPME (D-L-SPME) of derivatized aldehydes at 80 degrees C for 30 min. Limits of detection (LODs) using this optimal method were in the range of 0.1-4.4 microg/L for the majority of aliphatic (saturated, unsaturated), aromatic aldehydes and dialdehydes. Formaldehyde LODs and those of some hydroxylated aromatic aldehydes were between 32 and 55 microg/L. Headspace SPME using an on-fiber derivatization generally showed a lower sensitivity and several compounds were not detected. Another technique, the optimized headspace SPME of aldehydes derivatized in aqueous solution, was not as sensitive as D-L-SPME for hydroxylated aromatic aldehydes. The developed method was used to analyze aqueous particulate matter extracts; this method achieved higher sensitivities than those obtained with US Environmental Protection Agency (EPA) Method 556.  相似文献   

17.
This investigation evaluates headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to determine trace levels of organotins in water. The organotins were derivatized in situ with sodium tetraethylborate and adsorbed on a poly(dimethysiloxane) (PDMS)-coated fused silica fiber. The SPME experimental procedures to extract organotins in water were at pH 5, with extraction and derivatization simultaneously at 45 degrees C for 30 min in a 2% sodium tetraethylborate solution and a sample solution volume in the ratio of 1:1, and desorption in the splitless injection port of the GC at 260 degrees C for 2 min. Detection limits are determined to be in the low ng/L range. According to the analysis, the linearity range is from 10 to 10,000 ng/L with R.S.D. values below 12% except triphenyltin (24%). The proposed method was tested by analyzing surface seawater from the harbors on the Taiwanese coast for organotins residues. Some organotins studied were detected in the analyzed samples. Results of this study demonstrate the adequacy of the headspace SPME-GC-MS method for analyzing organotins in sea water samples.  相似文献   

18.
A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.  相似文献   

19.
A gas chromatographic method, along with a headspace solid-phase microextraction (HS-SPME), was developed for the determination of acrylamide formed in Maillard reaction model systems. The developed method was validated by liquid chromatography/mass spectrometry. A headspace sample was collected from an aqueous acrylamide solution (100 microg/mL) by SPME and directly injected into a gas chromatograph equipped with a nitrogen-phosphorus detector. The recovery of acrylamide from an aqueous solution was satisfactory, i.e, >93% under the conditions used. Acrylamide formed in an asparagine/D-glucose (molar ratio, 1/2) Maillard reaction model system heated at 150 and 170 degrees C for 20 min was collected and analyzed by the newly developed method using gas chromatography with nitrogen-phosphorus detection and HS-SPME. The amounts of acrylamide were 318 +/- 33 microg/g asparagine from a sample heated at 150 degrees C and 3329 +/- 176 microg/g asparagine from a sample heated at 170 degrees C. Addition of cysteamine or glutathione to the above model system reduced acrylamide formation. Acrylamide formation was not observed when cysteamine or glutathione was added to asparagine in the above model systems to obtain equimolar concentrations of both compounds. This newly developed method is simple and sensitive, and requires no solvent extraction.  相似文献   

20.
A procedure for determination of methyl tert.-butyl ether (MTBE) in water by headspace solid-phase microextraction (HS-SPME) has been developed. The analysis was carried out by gas chromatography with flame ionization detection. The extraction procedure, using a 65-microm poly(dimethylsiloxane)-divinylbenzene SPME fiber, was optimized following experimental design. A fractional factorial design for screening and a central composite design for optimizing the significant variables were applied. Extraction temperature and sodium chloride concentration were significant variables, and 20 degrees C and 300 g/l were, respectively chosen for the best extraction response. With these conditions, an extraction time of 5 min was sufficient to extract MTBE. The calibration linear range for MTBE was 5-500 microg/l and the detection limit 0.45 microg/l. The relative standard deviation, for seven replicates of 250 microg/l MTBE in water, was 6.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号