首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast 2D IR vibrational echo spectroscopy is described and a number of experimental examples are given. Details of the experimental method including the pulse sequence, heterodyne detection, and determination of the absorptive component of the 2D spectrum are outlined. As an initial example, the 2D spectrum of the stretching mode of CO bound to the protein myoglobin (MbCO) is presented. The time dependence of the 2D spectrum of MbCO, which is caused by protein structural evolution, is presented and its relationship to the frequency-frequency correlation function is described and used to make protein structural assignments based on comparisons to molecular dynamics simulations. The 2D vibrational echo experiments on the protein horseradish peroxidase are presented. The time dependence of the 2D spectra of the enzyme in the free form and with a substrate bound at the active site are compared and used to examine the influence of substrate binding on the protein's structural dynamics. The application of 2D vibrational echo spectroscopy to the study of chemical exchange under thermal equilibrium conditions is described. 2D vibrational echo chemical exchange spectroscopy is applied to the study of formation and dissociation of organic solute-solvent complexes and to the isomerization around a carbon-carbon single bond of an ethane derivative.  相似文献   

2.
Myoglobin (Mb) double mutant T67R/S92D displays peroxidase enzymatic activity in contrast to the wild type protein. The CO adduct of T67R/S92D shows two CO absorption bands corresponding to the A(1) and A(3) substates. The equilibrium protein dynamics for the two distinct substates of the Mb double mutant are investigated by using two-dimensional infrared (2D IR) vibrational echo spectroscopy and molecular dynamics (MD) simulations. The time-dependent changes in the 2D IR vibrational echo line shapes for both of the substates are analyzed using the center line slope (CLS) method to obtain the frequency-frequency correlation function (FFCF). The results for the double mutant are compared to those from the wild type Mb. The experimentally determined FFCF is compared to the FFCF obtained from molecular dynamics simulations, thereby testing the capacity of a force field to determine the amplitudes and time scales of protein structural fluctuations on fast time scales. The results provide insights into the nature of the energy landscape around the free energy minimum of the folded protein structure.  相似文献   

3.
The coupling between the OD stretch v=2 level and benzene-ring modes in 2-methoxyphenol-OD (hydroxyl H replaced by D) is observed with ultrafast two-dimensional (2D) IR vibrational echo spectroscopy. Because of this coupling, the 1-2 transition peak in the 2D spectrum is split into a doublet with peaks of approximately equal amplitudes. Several molecules and solvents were used to study this phenomenon. Near-IR (NIR) spectroscopy measurements and density-functional theory calculations (B3LYP6-31+G(d,p) level) were also applied. Experimental results and calculations show that the OD stretch 1-2 transition is coupled to a combination band related to the benzene-ring motions. A simple quantum-mechanical model indicates that the combination band has a frequency of 5172 and 5176.5 cm(-1) in CCl4 and hexane, respectively. The transition between this combination band and the ground state is too weak to detect by NIR. The transition between this band and the OD stretch first excited state is also so weak that most of the intensity of the doublet comes from the oscillator strength produced by coupling to the OD stretch. The model gives the coupling strengths as 6.5 and 7 cm(-1) in CCl4 and hexane, respectively.  相似文献   

4.
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.  相似文献   

5.
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.  相似文献   

6.
Progress in the field of 2D IR vibrational spectroscopy has been bolstered by the production of intense mid-IR laser pulses. As higher-energy pulses are employed, a concomitant increase occurs in the likelihood of fifth-order contributions to the 2D IR spectra. We report the appearance of fifth-order signals in 2D IR spectra of CO bound to the active site of the enzyme cytochrome P450(cam) with the substrate norcamphor. Two bands with novel time dependences, one on the diagonal and one off-diagonal, are not accounted for by normal third-order interactions. These bands are associated with a ν = 1-2 vibrational transition frequency. Both bands decay to 0 and then grow back in with opposite sign. The diagonal band is positive at short time, decays to 0, reappears with negative sign, before eventually decaying to 0. The off-diagonal band is negative at short time, decays to 0, reappears positive, and then decays to 0. The appearance and time dependence of these bands are characterized. Understanding these fifth-order bands is useful because they may be misidentified with time-dependent bands that arise from other processes, such as chemical exchange, vibrational coupling, or energy transfer. The presence and unusual time dependences of the fifth-order bands are reproduced with model calculations that account for the fact that vibrational relaxation from the ν = 2 to 1 level is approximately a factor of 2 faster than that from the ν = 1 to 0 level.  相似文献   

7.
The vibrations in the azido-, N(3), asymmetric stretching region of 2'-azido-2'-deoxyuridine (N(3)dU) are examined by two-dimensional infrared spectroscopy. In water and tetrahydrofuran (THF), the spectra display a single sharp diagonal peak that shows solvent sensitivity. The frequency-frequency correlation time in water is 1.5 ps, consistent with H-bond making and breaking dynamics. The 2D IR spectrum is reproduced for N(3)dU in water based on a model correlation function and known linear response functions. Its large extinction coefficient, vibrational frequency outside the protein and nucleic acid IR absorption, and sensitivity to water dynamics render -N(3) a very useful probe for 2D IR and other nonlinear IR studies: its signal is ca. 100 times that of nitriles.  相似文献   

8.
Spectrally resolved infrared stimulated vibrational echo measurements are used to measure the vibrational dephasing of the CO stretching mode of carbonmonoxy-hemoglobin (HbCO), a myoglobin mutant (H64V), and a bacterial cytochrome c(552) mutant (Ht-M61A) in aqueous solution and trehalose glasses. The vibrational dephasing of the heme-bound CO is significantly slower for all three proteins embedded in trehalose glasses compared to that of aqueous protein solutions. All three proteins exhibit persistent but notably slower spectral diffusion when the protein surface is fixed by the glassy solvent. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to reveal that the structural dynamics, as sensed by the CO, of the three proteins in trehalose and aqueous solution are dominated by fast (tens of femtoseconds), motionally narrowed fluctuations. MD simulations of H64V in dynamic and "static" water are presented as models of the aqueous and glassy environments. FFCFs are calculated from the H64V simulations and qualitatively reproduce the important features of the experimentally extracted FFCFs. The suppression of long time scale (picoseconds to tens of picoseconds) frequency fluctuations (spectral diffusion) in the glassy solvent is the result of a damping of atomic displacements throughout the protein structure and is not limited to structural dynamics that occur only at the protein surface. The analysis provides evidence that some dynamics are coupled to the hydration shell of water, supporting the idea that the bioprotection offered by trehalose is due to its ability to immobilize the protein surface through a thin, constrained layer of water.  相似文献   

9.
Two-dimensional infrared (2D IR) vibrational echo spectroscopy was used to measure the fast dynamics of two variants of chicken villin headpiece 35 (HP35). The CN of cyanophenylalanine residues inserted in the hydrophobic core were used as a vibrational probe. Experiments were performed on both singly (HP35-P) and doubly CN-labeled peptide (HP35-P(2)) within the wild-type sequence, as well as on HP-35 containing a singly labeled cyanophenylalanine and two norleucine mutations (HP35-P NleNle). There is a remarkable similarity between the dynamics measured in singly and doubly CN-labeled HP35, demonstrating that the presence of an additional CN vibrational probe does not significantly alter the dynamics of the small peptide. The substitution of two lysine residues by norleucines markedly improves the stability of HP35 by replacing charged with nonpolar residues, stabilizing the hydrophobic core. The results of the 2D IR experiments reveal that the dynamics of HP35-P are significantly faster than those of HP35-P NleNle. These observations suggest that the slower structural fluctuations in the hydrophobic core, indicating a more tightly structured core, may be an important contributing factor to HP35-P NleNle's increased stability.  相似文献   

10.
Ultrafast protein dynamics of the CO adduct of a myoglobin mutant with the polar distal histidine replaced by a nonpolar valine (H64V) have been investigated by spectrally resolved infrared stimulated vibrational echo experiments and molecular dynamics (MD) simulations. In aqueous solution at room temperature, the vibrational dephasing rate of CO in the mutant is reduced by approximately 50% relative to the native protein. This finding confirms that the dephasing of the CO vibration in the native protein is sensitive to the interaction between the ligand and the distal histidine. The stimulated vibrational echo observable is calculated from MD simulations of H64V within a model in which vibrational dephasing is driven by electrostatic forces. In agreement with experiment, calculated vibrational echoes show slower dephasing for the mutant than for the native protein. However, vibrational echoes calculated for H64V do not show the quantitative agreement with measurements demonstrated previously for the native protein.  相似文献   

11.
12.
We compare folding trajectories of chymotrypsin inhibitor (CI2) using a dynamic Monte Carlo scheme with Go-type potentials. The model considers the four backbone atoms of each residue and a sphere centered around Cβ the diameter of which is chosen according to the type of the side group. Bond lengths and bond angles are kept fixed. Folding trajectories are obtained by giving random increments to the φ and ψ torsion angles with some bias toward the native state. Excluded volume effects are considered. Two sets of 20 trajectories are obtained, with different initial configurations. The first set is generated from random initial configurations. The initial configurations of the second set are generated according to knowledge-based neighbor dependent torsion probabilities derived from triplets in the Protein Data Bank. Compared to chains with randomly generated initial configurations, those generated with neighbor-dependent probabilities (i) fold faster, (ii) have better defined secondary structure elements, and (iii) have less number of non-native contacts during folding. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3667–3678, 2006  相似文献   

13.
Dassia Egorova   《Chemical physics》2008,347(1-3):166-176
Two-dimensional optical photon echo spectra are simulated for model systems which exhibit vibrational, electronic and a combination of electronic and vibrational coherent dynamics. The coherent motion manifests itself as periodic beatings of the spectrum cross-peak intensity with the population time. The intensity modulations are compared to evolution of the excited-state population and coordinate expectation value. The advantageous capabilities of the technique as well as possible difficulties in spectra interpretations are outlined. Possibilities for distinguishing electronic and vibrational coherences are discussed.  相似文献   

14.
Ab initio quantum mechanical computations of force fields (FF) and atomic polar and axial tensors (APT and AAT) were carried out for triamide strands Ac-A-A-NH-CH(3) clustered into single-, double-, and triple-strand beta-sheet-like conformations. Models with phi, psi, and omega angles constrained to values appropriate for planar antiparallel and parallel as well as coiled antiparallel (two-stranded) and twisted antiparallel and parallel sheets were computed. The FF, APT, and AAT values were transferred to corresponding larger oligopeptide beta-sheet structures of up to five strands of eight residues each, and their respective IR and vibrational circular dichroism (VCD) spectra were simulated. The antiparallel planar models in a multiple-stranded assembly give a unique IR amide I spectrum with a high-intensity, low-frequency component, but they have very weak negative amide I VCD, both reflecting experimental patterns seen in aggregated structures. Parallel and twisted beta-sheet structures do not develop a highly split amide I, their IR spectra all being similar. A twist in the antiparallel beta-sheet structure leads to a significant increase in VCD intensity, while the parallel structure was not as dramatically affected by the twist. The overall predicted VCD intensity is quite weak but predominantly negative (amide I) for all conformations. This intrinsically weak VCD can explain the high variation seen experimentally in beta-forming peptides and proteins. An even larger variation was predicted in the amide II VCD, which had added complications due to non-hydrogen-bonded residues on the edges of the model sheets.  相似文献   

15.
Two-dimensional infrared vibrational spectroscopy is used to examine conformational inhomogeneity and ultrafast orientational motion within local environments of an organic photovoltaic bulk heterojunction thin film. The bulk heterojunction material consists of a mixture of the electron donor poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (CN-MEH-PPV) and the electron acceptor [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). PCBM species reside in a distribution of environments within large domains of the molecules that cause their C=O stretch modes to be inhomogeneously broadened. The molecular inhomogeneity also results in frequency dependent vibrational relaxation dynamics. The butyric acid methyl ester group of PCBM undergoes ultrafast wobbling-in-the-cone orientational motion on the 110 fs time scale within a cone semiangle of 29 degrees . The vibrational dynamics are sensitive metrics of molecular order in the material and have implications for charge mobility and degradation phenomena in organic photovoltaic devices. This report represents the first study of organic photovoltaic materials using ultrafast two-dimensional infrared vibrational spectroscopy.  相似文献   

16.
Time- and frequency-domain three-wave mixing spectroscopy (IR+visible sum frequency generation) is developed as the lowest-order nonlinear technique that is both surface selective and capable of measuring spectral evolution of vibrational coherences. Using 70 fs infrared and 40 fs visible pulses, we observe ultrafast spectral dynamics of the OD stretch of D2O at the CaF2 surface. Spectral shifts indicative of the hydrogen-bond network rearrangement occur on the 100 fs time scale, within the observation time window determined by the vibrational dephasing. By tuning the IR pulse wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different subensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding structures) shows monotonic decay and nu(OD) frequency shift to the red on a 100 fs time scale, which is better described by a Gaussian than an exponential frequency correlation function. In contrast, the red-side excitation (stronger H-bonding structures) results in a blue spectral shift and a recursion in the signal at 125+/-10 fs, indicating the presence of an underdamped intermolecular mode of interfacial water.  相似文献   

17.
In a recently reported study [Mukherjee, et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3528] we used 2D IR spectroscopy and 1-(13)C=(18)O isotope labeling to measure the vibrational dynamics of 11 amide I modes in the CD3zeta transmembrane domain. We found that the homogeneous line widths and population relaxation times were all nearly identical, but that the amount of inhomogeneous broadening correlated with the position of the amide group inside the membrane. In this study, we use molecular dynamics simulations to investigate the structural and dynamical origins of these experimental observations. We use two models to convert the simulations to frequency trajectories from which the mean frequencies, standard deviations, frequency correlation functions, and 2D IR spectra are calculated. Model 1 correlates the hydrogen-bond length to the amide I frequency, whereas model 2 uses an ab initio-based electrostatic model. We find that the structural distributions of the peptidic groups and their environment are reflected in the vibrational dynamics of the amide I modes. Environmental forces from the water and lipid headgroups partially denature the helices, shifting the infrared frequencies and creating larger inhomogeneous distributions for residues near the ends. The least inhomogeneously broadened residues are those located in the middle of the membrane where environmental electrostatic forces are weakest and the helices are most ordered. Comparison of the simulations to experiment confirms that the amide I modes near the C-terminal are larger than at the N-terminal because of the asymmetric structure of the peptide bundle in the membrane. The comparison also reveals that residues at a kink in the alpha-helices have broader line widths than more helical parts of the peptide because the peptide backbone at the kink exhibits a larger amount of structural disorder. Taken together, the simulations and experiments reveal that infrared line shapes are sensitive probes of membrane protein structural and environmental heterogeneity.  相似文献   

18.
Weak pi hydrogen-bonded solute/solvent complexes are studied with ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature-dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute/solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen-bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory.  相似文献   

19.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

20.
The molecular dynamics with quantum transitions method is used to study the vibrational relaxation of the HOD bend fundamental in liquid D(2)O. All of the vibrational bending degrees of freedom of the HOD and D(2)O molecules are described by quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The effect of the coupling between the rotational and vibrational degrees of freedom of the deuterated water molecules is analyzed. A kinetic mechanism based on three steps is proposed in order to interpret the dynamics of the system. It is shown that intermolecular vibrational energy transfer plays an important role in the relaxation process and also that the transfer of energy into the rotational degrees of freedom is favored over the transfer of energy into the translational motions. The thermalization of the system after the relaxation is reached in a shorter time scale than that of the recovery of the hydrogen bond network. The relaxation and equilibration times obtained compare well with experimental and previous theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号