首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characteristics of alpha-helices in poly-alanine-based peptides have been investigated via molecular dynamics simulation with the goal of understanding the basic features of peptide simulations within the context of a model system, classical molecular dynamics with generalized Born (GB) solvation, and to shed insight into the formation and stabilization of alpha-helices in short peptides. The effects of peptide length, terminal charges, proline substitution, and temperature on the alpha-helical secondary structure have been studied. The simulations have shown that distinct secondary structure begins to develop in peptides with lengths approaching 10 residues while ambiguous structures occur in shorter peptides. The helical content of peptides with lengths > or =10 amino acids is observed to be nearly constant up to (Ala)(40). Interestingly, terminal charges and proline in the second position from the N-terminus alter the secondary structure locally with little effect on the overall alpha-helical content of the peptide. The free energy profile of helix formation was also investigated. A large increase in free energy accompanying the formation of helices with more than two consecutive hydrogen bonds in the (i, i + 4) pattern was observed while the free energy increases linearly with additional hydrogen bonds. Values for the change in enthalpy and entropy of helix nucleation and propagation are reported. Additionally the results obtained from the GB model are compared to explicit solvent simulations of two synthetic alanine-based peptides.  相似文献   

2.
The free energy of alpha-helix dimerization of the transmembrane (TM) region of glycophorin A was estimated from a 125-ns molecular dynamics (MD) simulation in a membrane mimetic. The free energy profile was obtained by allowing the TM helical segments to diffuse reversibly along the reaction pathway. Partition of the potential of mean force into free energy components illuminates the critical steps of alpha-helix recognition and association. At large separations, the TM segments are pushed together by the solvent, allowing initial, but not necessarily native, interhelical interactions to occur. This early recognition stage precedes the formation of native contacts, which is accompanied by a tilt of the helices, characteristic of the dimeric structure. This step is primarily driven by the van der Waals helix-helix interactions. Free energy perturbation calculations of the L75A and I76A point mutations reveal a disruption in helix-helix association due to a loss of favorable dispersion interactions. Additional MD simulations of the native TM dimer and of a single alpha-helix confirm that, prior to association, individual alpha-helices are independently stable, in agreement with the "two-stage" model of integral membrane protein folding.  相似文献   

3.
The structure and dynamics of a truncated (residues 82–136) caveolin-1 (Cav1) construct having a helix-break-helix motif are explored by both all-atom free energy and molecular dynamics (MD) simulations in an explicit bilayer membrane. Two stable Cav1 conformations with small (LB-Cav1) and large hinge angles (RB-Cav1) between two helices are identified although their relative free energy cannot be reliably estimated due to the sampling issues. RB-Cav1s contain one or two lipids residing between the helices that are hydrogen bonded (h-bonded) to both helices in a multidentate fashion. LB-Cav1s show the helices with mono-dentate lipid h-bond interactions or multidentate interactions limited to a single helix at most. The two conformational states of Cav1 remain their initial state during 2-μs MD simulation, suggesting that there is a significant hidden barrier (other than the insertion depth of Cav1 and its hinge angle) and the Cav1 conformational states are tightly regulated by the h-bonds between Cav1 and lipids along with the associated lipid rearrangement during the course of Cav1 conformational changes. © 2019 Wiley Periodicals, Inc.  相似文献   

4.
姚雪霞 《化学研究》2008,19(4):56-59
运用分子动力学(Molecular dynamics,MD)和MM—PBSA(molecular mechanics/Poisson Boltzmann surfaeearea)相结合的方法预测了γ-环糊精(γ-cyclodextrin,γ-CD)和波尼松龙的包结模式.在MD模拟过程中,波尼松龙分别采用A环和D环两种取向从γ-CD大口端进入其空腔.在MD轨迹采样基础上,采用高效MM—PBSA方法计算了两种取向的包结自由能.结果表明,计算包结自由能值和实验包结自由能值非常吻合.进一步分析各个能量项,发现范德华相互作用能为包结的主要驱动力.通过比较两种取向的包结自由能大小,预测D环取向为优势包结模式.  相似文献   

5.
The interplay of protein dynamics and molecular recognition is of fundamental importance in biological processes. Atomic‐resolution insights into these phenomena may provide new opportunities for drug discovery. Herein, we have combined NMR relaxation experiments and residual dipolar coupling (RDC) measurements with molecular dynamics (MD) simulations to study the effects of the anti‐inflammatory drug carbenoxolone (CBNX) on the conformational properties and on the internal dynamics of a subdomain (box A) of high‐mobility group B protein (HMGB1). 15N relaxation data show that CBNX binding enhances the fast pico‐ to nanosecond motions of a loop and partially removes the internal motional anisotropy of the first two helices of box A. Dipolar wave analysis of amide RDC data shows that ligand binding induces helical distortions. In parallel, increased mobility of the loop upon ligand binding is highlighted by the essential dynamics analysis (EDA) of MD simulations. Moreover, simulations detect two possible orientations for CBNX, which induces two possible conformations of helix H3, one being similar to the free form and the second one causing a partial helical distortion. Finally, we introduce a new approach for the analysis of the internal coordination of protein residues that is consistent with experimental data and allows us to pinpoint which substructures of box A are dynamically affected by CBNX. The observations reported here may be useful for understanding the role of protein dynamics in binding at atomic resolution.  相似文献   

6.
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.  相似文献   

7.
Symmetric binary mixtures capable of strong association via a highly directional and saturable specific interaction between unlike molecules are investigated by canonical molecular dynamics simulations. The specific interaction of the molecules is defined in a new coarse-grained pair potential that can be applied in continuous molecular dynamics as well as in Monte Carlo simulations. The thermodynamic, structural, and dynamic properties of the associating mixture fluids are investigated as a function of density, temperature, and association strength of the specific interaction. Detailed analysis of the simulation data confirms a two-stage mechanism in the formation of specific bonds with increasing interaction strength, including a fast dimerization process and a subsequent stage of perfecting the bonds. A large heat capacity peak is found during the formation or breaking of the bonds, reflecting the large energy fluctuation introduced by the strong association. The fractions of nonbonded molecules obtained from the simulations as a function of density, temperature, and interaction strength are in excellent agreement with the predictions of Wertheim's thermodynamic perturbation theory. The translational and rotational dynamics of the Tmer mixture are effectively retarded with increasing association strength and are analyzed in terms of autocorrelation functions and a non-Gaussian parameter for the translational dynamics. The lifetimes of molecules in bonded and nonbonded states provide detailed information about the transformation of molecules between the bonded state and the nonbonded state. Finally, simulation sampling problems inherent to strongly interacting systems are easily overcome using the parallel tempering simulation technique. This latter result confirms that with the new continuous coarse-grained simulation potential we have a versatile and flexible interaction potential that can be used with many available molecular dynamics and Monte Carlo algorithms under various ensembles.  相似文献   

8.
Carboxylic acid dimers are useful model systems for understanding the interplay of hydrogen bonding, hydrophobic effects, and entropy in self-association and assembly. Through extensive sampling with a classical force field and careful free energy analysis, it is demonstrated that both hydrogen bonding and hydrophobic interactions are indeed important for dimerization of carboxylic acids (except formic acid). The dimers are only weakly ordered, and the degree of ordering increases with stronger hydrophobic interactions between longer alkyl chains. Comparison of calculated and experimental dimerization constants reveals a systematic tendency for excessive self-aggregation in current classical force fields. Qualitative and quantitative information on the thermodynamics of hydrogen bonding and hydrophobic interactions derived from these simulations is in excellent agreement with existing results from experiment and theory. These results provide a verification from first principles of previous estimations based on two statistical mechanical hydrophobic theories. We also revisit and clarify the fundamental statistical thermodynamics formalism for calculating absolute binding constants, external entropy, and solvation entropy changes upon association from detailed free energy simulations. This analysis is believed to be useful for a wide range of applications including computational studies of protein-ligand and protein-protein binding.  相似文献   

9.
10.
We present a method to study the dynamics of long DNA molecules inside a cubic array of confining spheres, connected through narrow openings. Our method is based on the coarse-grained, lakes-straits model of Zimm and is therefore much faster than Brownian dynamics simulations. In contrast to Zimm's approach, our method uses a standard stochastic kinetic simulation to account for the mass transfer through the narrow straits and the formation of new lakes. The different rates, or propensities, of the reactions are obtained using first-passage time statistics and a Monte Carlo sampling to compute the total free energy of the chain. The total free energy takes into account the self-avoiding nature of the chain as well as confinement effects from the impenetrable spheres. The mobilities of various chains agree with biased reptation theory at low and high fields. At moderate fields, confinement effects lead to a new regime of reptation where the mobility is a linear function of molecular weight and the dispersion is minimal.  相似文献   

11.
The mass transfer dynamics at water∕vapor interface through monolayer films was theoretically investigated by a combination of molecular dynamics and Langevin dynamics simulations. The rare events of mass accommodation are sampled by the Langevin simulation with sufficient statistical accuracy, on the basis of the free energy and friction profiles obtained by the molecular dynamics simulation. The free energy profiles exhibit a barrier in the long-chain monolayers, and the mechanism of the barrier is elucidated in relation to the "water finger" formation. The present Langevin simulation well described the remarkable dependence of the mass accommodation coefficient on the chain length and surface density. The transition state theory for the barrier passage remarkably overestimates the mass accommodation coefficient, and the Kramers or Grote-Hynes theory may not be appropriate, due to large variation of the friction in the entrance channel and∕or broad barrier.  相似文献   

12.
13.
Binding of proteins to membranes is often accompanied by titration of ionizable residues and is, therefore, dependent on pH. We present a theoretical treatment and computational approach for predicting absolute, pH-dependent membrane binding free energies. The standard free energy of binding, DeltaG, is defined as -RTln(P(b)/P(f)), where P(b) and P(f) are the amounts of bound and free protein. The apparent pK(a) of binding is the pH value at which P(b) and P(f) are equal. Proteins bind to the membrane in the pH range where DeltaG is negative. The components of the binding free energy are (a) the free energy cost of ionization state changes (DeltaG(ion)), (b) the effective energy of transfer from solvent to the membrane surface, (c) the translational/rotational entropy cost of binding, and (d) an ideal entropy term that depends on the relative volume of the bound and free state and therefore depends on lipid concentration. Calculation of the first term requires determination of pK(a) values in solvent and on the membrane surface. All energies required by the method are obtained from molecular dynamics trajectories on an implicit membrane (IMM1-GC). The method is tested on pentalysine and the helical peptide VEEKS, derived from the membrane-binding domain of phosphocholine cytidylyltransferase. The agreement between the measured and the calculated free energies of binding of pentalysine is good. The extent of membrane binding of VEEKS is, however, underestimated compared to experiment. Calculations of the interaction energy between two VEEKS helices on the membrane suggest that the discrepancy is mainly due to the neglect of protein-protein interactions on the membrane surface.  相似文献   

14.
Factor Xa (fXa) is a promising target for antithrombotic drugs. Recently, we presented a molecular dynamics study on fXa, which highlighted the need for a careful system setup to obtain stable simulations. Here, we show that these simulations can be used to predict the free energy of binding of several fXa inhibitors. We tested molecular mechanics/Poisson-Boltzmann surface area, molecular mechanics/Generalized Born surface area, and linear interaction energy (LIE) on a small data set of fXa ligands. The continuum solvent approaches only yield satisfying correlations to the experimental results if some of the water molecules are explicitly included in the free energy calculations. LIE gave reasonable results if a sufficiently large data set is used. In general, our procedure of setting up the fXa simulation system enabled MD simulations, which produce adequate ensembles for free energy calculations.  相似文献   

15.
Human dipeptidyl peptidase III (DPP III) is a two domain metallo-peptidase from the M49 family. The wide interdomain cleft and broad substrate specificity suggest that this enzyme could experience significant conformational change. Long (>100 ns) molecular dynamics (MD) simulations of DPP III revealed large range conformational changes of the protein, suggesting the pre-existing equilibrium model for a substrate binding. The binding free energy calculations revealed tighter binding of the preferred synthetic substrate Arg-Arg-2-naphtylamide to the "closed" than to the "open" DPP III conformation. Our assumption that Asp372 plays a crucial role in the large scale interdomain closure was proved by the MD simulations of the Asp372Ala variant. During the same simulation time, the variant remained more "open" than the wild type protein. Apparently, Ala was not as efficient as Asp in establishing the interdomain interactions. According to the MM-PBSA calculations, the electrostatic component of the free energy of solvation turned out to be higher for the "closed" protein than for its less compact form. However, the gain in entropy due to water released from the interdomain cleft nicely balanced this negative effect.  相似文献   

16.
The present study involves the integrated network pharmacology and phytoinformatics-based investigation of phytocompounds from Ocimum tenuiflorum against diabetes mellitus-linked Alzheimer’s disease. It aims to investigate the mechanism of the Ocimum tenuiflorum phytocompounds in the amelioration of diabetes mellitus-linked Alzheimer’s disease through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses. A total of 14 predicted genes of the 26 orally bioactive compounds were identified. Among these 14 genes, GAPDH and AKT1 were the most significant. The network analysis revealed the AGE-RAGE signaling pathway to be a prominent pathway linked to GAPDH with 50.53% probability. Upon the molecular docking simulation with GAPDH, isoeugenol was found to possess the most significant binding affinity (−6.0 kcal/mol). The molecular dynamics simulation and binding free energy calculation results also predicted that isoeugenol forms a stable protein–ligand complex with GAPDH, where the phytocompound is predicted to chiefly use van der Waal’s binding energy (−159.277 kj/mol). On the basis of these results, it can be concluded that isoeugenol from Ocimum tenuiflorum could be taken for further in vitro and in vivo analysis, targeting GAPDH inhibition for the amelioration of diabetes mellitus-linked Alzheimer’s disease.  相似文献   

17.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

18.
ErbB4, a receptor tyrosine kinase of the ErbB family, plays crucial roles in cell growth and differentiation, especially in the development of the heart and nervous system. Ligand binding to its extracellular region could modulate the activation process. To understand the mechanism of ErbB4 activation induced by ligand binding, we performed one microsecond molecular dynamics (MD) simulations on the ErbB4 extracellular region (ECR) with and without its endogenous ligand neuregulin1β (NRG1β). The conformational transition of the ECR-ErbB4/NRG1β complex from a tethered inactive conformation to an extended active-like form has been observed, while such large and function-related conformational change has not been seen in the simulation on the ECR-ErbB4, suggesting that ligand binding is indeed the active inducing force for the conformational transition and further dimerization. On the basis of MD simulations and principal component analysis, we constructed a rough energy landscape for the conformational transition of ECR-ErbB4/NRG1β complex, suggesting that the conformational change from the inactive state to active-like state involves a stable conformation. The energy barrier for the tether opening was estimated as ~2.7 kcal/mol, which is very close to the experimental value (1-2 kcal/mol) reported for ErbB1. On the basis of the simulation results, an atomic mechanism for the ligand-induced activation of ErbB4 was postulated. The present MD simulations provide a new insight into the conformational changes underlying the activation of ErbB4.  相似文献   

19.
Dimerization free energies are fundamental quantities that describe the strength of interaction of different molecules. Obtaining accurate experimental values for small molecules and disentangling the conformations that contribute most to the binding can be extremely difficult, due to the size of the systems and the small energy differences. In many cases, one has to resort to computational methods to calculate such properties. In this work, we used molecular dynamics simulations in conjunction with metadynamics to calculate the free energy of dimerization of small aromatic rings, and compared three models from popular online servers for atomistic force fields, namely G54a7, CHARMM36 and OPLS. We show that, regardless of the force field, the profiles for the dimerization free energy of these compounds are very similar. However, significant care needs to be taken when studying larger molecules, since the deviations from the trends increase with the size of the molecules, resulting in force field dependent preferred stacking modes; for example, in the cases of pyrene and tetracene. Our results provide a useful background study for using topology builders to model systems which rely on stacking of aromatic moieties, and are relevant in areas ranging from drug design to supramolecular assembly.  相似文献   

20.
Distributed Replica (REPDSTR) is a powerful parallelization technique enabling simulations of a group of replicas in a parallel/parallel fashion, where each replica is distributed to different nodes of a large cluster [Theor. Chem. Acc. 109: 140 (2003)]. Here, we use the framework provided by REPDSTR to combine a staged free energy perturbation protocol with different values of the thermodynamic coupling parameters with replica-exchange molecular dynamics (FEP/REMD. The structure of REPDSTR, which allows multiple parallel input/output (I/O), facilitates the treatment of replica-exchange to couple the N window simulations. As a result, each of the N synchronous window simulations benefit from the sampling carried out by the N-1 others. As illustrative examples of the FEP/REMD strategy, calculations of the absolute hydration and binding free energy of small molecules were performed using the biomolecular simulation program CHARMM adapted for the IBM Blue Gene/P platform. The computations show that a FEP/REMD strategy significantly improves the sampling and accelerate the convergence of absolute free energy computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号