首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effect of different modes of the carboxylato ligands on the reactivity of gaseous zinc-acetate complexes is reported. Using infrared multiphoton dissociation spectroscopy, it is demonstrated that the coordination of acetate in [(Imi)(n)Zn(CH(3)COO)](+) complexes (Imi = imidazole, n = 1-3) changes from bi- to monodentate upon coordination of the third imidazole ligand. This so-called carboxylate shift substantially influences the reactivity of the zinc-acetate complexes in comparison to complexes with monodentate counterions. The differences in reactivities are demonstrated on the ligand exchange reactions of [L(n)ZnX](+) (n = 2 or 3,; L = imidazole or pyridine; X = OH, Cl, CH(3)COO, and CH(3)CONHO).  相似文献   

2.
Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).  相似文献   

3.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

4.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   

5.
A new copper(II) acetate, [Na(2)Cu(CH(3)COO)(4)(H(2)O)].H(2)O (1), has been crystallized from an aqueous solution containing sodium acetate and copper(II) acetate monohydrate in a 4:1 ratio and the structure determined by X-ray crystallography. 1 crystallizes in the monoclinic space group P2(1)/c, with a = 16.638(3) A, b = 11.781(2) A, c = 15.668(3) A, beta = 90.11(3) degrees, V = 3071.0(11) A(3), and Z = 4. In the asymmetric unit, sodium ions bridge two crystallographically unique square planar [Cu(CH(3)COO)(4)](2-) units to their symmetry-generated neighbors to form corrugated 2D sheets of Na(2)Cu(CH(3)COO)(4), which are held together by H-bonding interactions involving the waters of crystallization. In contrast, the structures of known sodium copper acetates are better described as 3D frameworks. The metal centers are bridged by a number of acetates in novel coordination modes. The square planar Cu(II) geometry generated by oxygen atoms from four different acetates is an unexpected feature given the weak ligand field provided by the acetate ligands.  相似文献   

6.
The facile aqueous medium reactions of copper(II) nitrate with BES biobuffer [(HOCH(2)CH(2))(2)N(CH(2)CH(2)SO(3)H), hereinafter referred as H(3)bes] in the presence of various benzenecarboxylic acids [benzoic (Hba), 3-hydroxybenzoic (Hhba), and 3,5-dihydroxybenzoic (Hdhba) acid] and lithium hydroxide gave rise to the self-assembly generation of three new heterometallic Cu(II)/Li materials, [Li(H(2)O)(4)][Cu(4)(μ(2)-Hbes)(4)(μ(2)-ba)]·H(2)O (1) and [Cu(4)(μ(3)-Hbes)(4)(L){Li(H(2)O)(2)}](n)·3nH(2)O {L = μ(2)-hba (2) and μ(2)-dhba (3)}. They were isolated as air-stable crystalline solids and fully characterized by infrared (IR) and UV-vis spectroscopy and electrospray ionization (ESI)-MS(±), elemental, thermal, and single-crystal X-ray diffraction analyses. The latter revealed that 1-3 have comparable packing patterns and unit cell parameters, being composed of similar [Cu(4)(μ-Hbes)(4)(μ-carboxylate)](-) cores and [Li(H(2)O)(4)](+) cations (in 1) or [μ-Li(H(2)O)(2)](+) groups (in 2 and 3), which are arranged into discrete 0D aggregates in 1 or infinite 3D noninterpenetrating metal-organic networks in 2 and 3. The topological analysis of the coordination polymers 2 and 3 disclosed the trinodal 3,3,4-connected underlying nets with an unprecedented topology defined by the point symbol of (4.6.8)(4)(4(2).6)(2)(6(2).16(2).18(2)), further simplification of which resulted in the binodal 4,4-connected nets with the pts (PtS) topology. Apart from representing very rare examples of coordination compounds derived from H(3)bes, 1-3 feature solubility in water and were applied as efficient and versatile catalyst precursors for the mild (60 °C) single-pot hydrocarboxylation, by CO and H(2)O, of various gaseous, linear, and cyclic C(n) (n = 2-9) alkanes into the corresponding C(n+1) carboxylic acids, in H(2)O/MeCN medium under homogeneous conditions and in the presence of potassium peroxodisulfate. Total yields (based on alkane) of carboxylic acids up to 78% were achieved, which are remarkable in the field of alkane functionalization under mild conditions, especially for a C-C bond formation reaction in aqueous acid-solvent-free medium.  相似文献   

7.
Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O reveal the occurrence of consecutive replacement of water ligands by heavy water, and in this respect the complexes with n=4 and 5 are somewhat more reactive than their smaller homologs with n=1-3 as well as the larger clusters with n=6 and 7. For the latter two ions, the theory suggests the existence of isomers, such as complexes with monodentate nitrato ligands as well as solvent-separated ion pairs with a common solvation shell. The reactions observed and the ion thermochemistry are discussed in the context of ab initio calculations, which also reveal the structures of the various hydrated cation complexes.  相似文献   

8.
This report describes the synthesis and biological evaluation of cationic (99m)Tc-tricarbonyl complexes anchored by ether-containing tris(pyrazolyl)methane or bis(pyrazolyl)ethanamine ligands to be applied in the design of radiopharmaceuticals for myocardial imaging: fac-[(99m)Tc(CO)(3){RC(pz)(3)}](+) (R = H (1a), MeOCH(2) (2a), EtOCH(2) (3a), (n)PrOCH(2) (4a)) and fac-[(99m)Tc(CO)(3){RNHCH(2)CH(pz)(2)}](+) (R = H (5a), MeO(CH(2))(2) (6a)) (pz = pyrazolyl). At the no carrier added level, complexes 1a-6a were obtained in high radiochemical yield (> 98%) by reaction of fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) with the corresponding tripod chelator in aqueous medium. All these complexes display a high in vitro and in vivo stability, except 6a which metabolizes in vivo yielding fac-[(99m)Tc(CO)(3){HO(CH(2))(2)NHCH(2)CH(pz)(2)}](+) (7a). Biological studies in mice have shown that among the radiotracers evaluated in this work, 3a, anchored by a tris(pyrazolyl)methane chelator bearing an ethyl methyl ether substituent, has the highest heart uptake (3.6 +/- 0.5%ID g(-1) at 60 min p.i.). Complex 3a presents also the best heart: blood, heart: liver and heart: lung ratios, appearing as the most promising as a potential myocardial imaging agent. The chemical identity of 1a-7a was ascertained by HPLC comparison with the previously reported fac-[Re(CO)(3){HC(pz)(3)}]Br (1) and with the novel fac-[Re(CO)(3){RC(pz)(3)}]Br (R = MeOCH(2) (2), EtOCH(2) (3), (n)PrOCH(2)(4)) and fac-[Re(CO)(3){RNHCH(2)CH(pz)(2)}]Br (R = H (5), MeO(CH(2))(2) (6) HO(CH(2))(2) (7)). The novel Re(I) tricarbonyl complexes, 2-7, were characterized by the common analytical techniques, including single crystal X-ray diffraction analysis. The solid state structure confirmed the presence of facial and tridentate (kappa(3)-N(3)) anchor ligands. Solution NMR studies have also shown that this kappa(3)-N(3) coordination mode is retained in solution for all complexes (2-7).  相似文献   

9.
A series of pyridine-substituted derivatives of octaacetatotetraplatinum(II), [Pt4(CH3COO)8-n(L)2n]n+ (L= 4-dimethylaminopyridine (dmap), pyridine (py), 4-cyanopyridine (cpy); n = 1-4) were prepared, and the tetra- and octasubstituted forms (n = 2 and 4) were isolated. 1HNMR spectra showed that this type of cluster undergoes a comproportionation reaction. Reactions between clusters in which n = 0 and 2, n = 0 and 4, and n = 2 and 4 afforded Pt4 clusters with n = 1, 2, and 3, respectively, as a main product in acetonitrile. The dmap-substituted clusters, trans-[Pt4(CH3COO)6(dmap)4](ClO4)2 x 3CH3NO2 (3a(ClO4)2 x 3CH3NO2) and [Pt4(CH3COO)4(dmap)8](ClO4)4 x 4 H2O (5a(ClO4)4-4H2O), have been structurally characterized. Both 3a and 5a have a square-planar cluster core comprised of four PtII ions, and all eight out-of-plane coordination sites are occupied by acetate ligands in a bridging mode. In 5a, all of the in-plane sites are occupied by dmap ligands. In 3a, four dmap ligands occupy the coordination sites at the two mutually opposite edges of the square planar cluster skeleton, giving a trans tetrasubstituted form of [Pt4(CH3COO)8-] (1). In octasubstituted 5a, adjacent dmap ligands are so closely arranged that the Pt-N distances (2.20(3), 2.30(3) A) are longer than those in tetrasubstituted 3a (2.13(1), 2.15(1) A) and related Pt4 clusters. Furthermore, rotation of the dmap ligand about the Pt-N bond in 5a was restricted, and the rate constant of the rotation was 4.5s(-1) at 20 degrees C from dynamic NMR study. Cluster [Pt4(CH3COO)5(dmap)6]3+ (4a) also exhibited similar hindered rotation with the rate constants of 2.0s(-1), 12s(-1) and approximately 10(4)s(-1) at 20 degrees C depending on the coordination sites of the dmap ligands in 4a.  相似文献   

10.
Li G  Hou H  Li L  Meng X  Fan Y  Zhu Y 《Inorganic chemistry》2003,42(16):4995-5004
Treatment of two kinds of ferrocenyl-substituted carboxylate ligands (3-ferrocenyl-2-crotonic acid, HOOC-CH=(CH(3))CFc (Fc=(eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) or O-ferrocecarbonyl benzoic acid, o-HOOCC(6)H(4)COFc with Pb(OAc)(2).3H(2)O, Zn(OAc)(2).2H(2)O, or Cd(OAc)(2).2H(2)O) resulted in four novel ferrocene-containing coordination polymers [[Pb(mu(2)-eta(2)-OOCCH=(CH(3))CFc)(2)].MeOH](n) (1), [[Zn(o-OOCC(6)H(4)COFc)(2)(4,4'-bipy)(H(2)O)(2)].2MeOH.2H(2)O](n) (4,4'-bipy = 4,4'-bipyridine) (2), [[Cd(o-OOCC(6)H(4)COFc)(2)(bpe)(MeOH)(2)].2H(2)O](n) (bpe = 1,2-bis(4-pyridyl)ethene) (3), and [Pb(o-OOCC(6)H(4)COFc)(eta(2)-o-OOCC(6)H(4)COFc)(bpe)](n)() (4). Their crystal structures have been characterized by single X-ray determinations. In polymer 1, Pb(II) ions are bridged by tridentate FcC(CH(3))=CHCOO(-) anions, forming an infinite chain [Pb(mu(2)-eta(2)-OOC=CH(CH(3))CFc)(2)](n). In polymers 2-4, there are three kinds of components, metal ions, o-FcCOC(6)H(4)COO(-) units, and organic bridging ligands. The bipyridine-based ligands connect metal ions leading to a one-dimensional chain with o-FcCOC(6)H(4)COO(-) units acting as monodentate or chelate ligands in the side chain. Such coordination polymers containing ferrocenyl-substituted carboxylate and bipyridine-based ligands are very rare. The solution-state differential pulse voltammetries of polymers 1-4 were determined. The results indicate that the half-wave potential of the ferrocenyl moieties is influenced by the Pb(II) ions in polymer 1 and strongly influenced by Zn(II), Cd(II), or Pb(II) ions in polymers 2-4. The thermal properties of the four polymers were also investigated.  相似文献   

11.
Hou  J. Q.  Chen  Y. M.  Dong  W. W. 《Journal of Structural Chemistry》2021,62(10):1588-1598
Journal of Structural Chemistry - Two coordination complexes, namely [Zn2(4-APha)2(CH3COO)2(H2O)2] (1) and [Cd(4-APha)(CH3COO) (H2O)0.5]4·6H2O (2)...  相似文献   

12.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

13.
Yang E  Zhang J  Li ZJ  Gao S  Kang Y  Chen YB  Wen YH  Yao YG 《Inorganic chemistry》2004,43(21):6525-6527
The hydrothermal reaction of mellitic acid, 4,4'-bipydine, and Cu(CH(3)COO)(2).H(2)O gave rise to a novel 3D supramolecular architecture interpenetrated by three types of coordination polymer motifs. Two independent [[Cu(2)(mellitate)(4,4'-bpy)(H(2)O)(2)](2)(-)] 3D polymers incorporating helical substructures were interwoven into a 3D network with double-stranded helical tubes that host 1D linear polymers [Cu(4,4'-bpy)(H(2)O)(4)](2+)](n).  相似文献   

14.
Two different pathways for the introduction of an acetyl group at N(epsilon ) in a N(alpha), N(delta), and -COO protected histidine to afford N(epsilon)-(CH(2)COOH)-histidine derivative 7 b are presented. The purpose of this study is the coupling of 7 b to amino groups in bioactive molecules such as peptides. After full deprotection of such a bioconjugate, histidine provides three coordination sites which efficiently coordinate to [(99m)Tc(OH(2))(3)(CO)(3)](+) or [Re(OH(2))(3)(CO)(3)](+) in a facial geometry. This allows the development of novel radiopharmaceuticals. Selective derivatization at the N(epsilon) position has conveniently been achieved by concomitant protection of N(alpha) and N(delta) with a carbonyl group forming a six-membered urea. Cyclic urea ring opening with Fm-OH, coupling of phenylalanine as a model to 7 b through its primary amine and removing of all protecting groups in one step gave a histidine derivative of phenylalanine which could be labeled at 10(-5) M with (99m)Tc in very high yield and even in about 50 % yield at 10(-6) M. The Xray structure of a complex with [Re(CO)(3)](+) in which anilin is coupled to 7 b confirms the facial arrangement of histidine. A second pathway applies directly the [Re(CO)(3)](+) moiety as a protecting group. This is one of the rare examples in which a metal fragment is used as a protecting group for organic functionalities. The coordination to histidine protects the N(alpha), N(delta) and COO group in one single step, subsequent alkylation with BrCH(2)COOH(R) at N(epsilon), coupling to phenylalanine and oxidative deprotection of [Re(CO)(3)](+) to [ReO(4)](-) gave the corresponding bioconjugate in which histidine is coupled to phenylalanine through an acetylamide at N(epsilon). Both methods offer convenient pathways to introduce histidine in a biomolecule under retention of its three coordination sites. The procedures are adaptable to any biomolecule with pendant amines and allow the development of novel radiopharmaceuticals or inversed peptides.  相似文献   

15.
Unimolecular metastable decomposition of diethoxymethane (CH(2)(OCH(2)CH(3))(2), 1) upon electron impact has been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry and theD-labeling technique in conjunction with thermochemistry. The m/z 103 ion ([M - H](+) : CH(OCH(2)CH(3)) = O(+)CH(2)CH(3)) decomposes into the m/z 47 ion (protonated formic acid, CH(OH) = O(+)H) by consecutive losses of two C(2)H(4) molecules via an m/z 75 ion. The resulting product ion at m/z 47 further decomposes into the m/z 29 and 19 ions by losses of H(2)O and CO, respectively, via an 1,3-hydroxyl hydrogen transfer, accompanied by small kinetic energy release (KER) values of 1.3 and 18.8 meV, respectively. When these two elimination reactions are suppressed by a large isotope effect, however, another 1,1-H(2)O elimination with a large KER value (518 meV) is revealed. The m/z 89 ion ([M - CH(3)](+) : CH(2)(OCH(2)CH(3))O(+) = CH(2)) decomposes into the m/z 59 ion (CH(3)CH(2)O(+) = CH(2)) by losing CH(2)O in the metastable time window. The source-generated m/z 59 ion ([M - OCH(2)CH(3)](+) : CH(2) = O(+)CH(2)CH(3)) decomposes into the m/z 41 (CH(2) = CH(+)CH(2)) and m/z 31 (CH(2) = O(+)H) ions by losses of H(2)O and C(2)H(4), respectively, with considerable hydrogen scrambling prior to decomposition. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The macrocycle 1,4,7-trithiacyclononane (ttcn) reacts with [(η(5)-Ind)Mo(CO)(2)(NCMe)(2)](+) (or [(η(5)-Ind)Mo(CO)(2)(κ(2)-dme)](+)) to give [(η(3)-Ind)Mo(CO)(2)(κ(3)-ttcn)](+) as the BF(4)(-) salt (1), but its reaction with [(η(5)-Ind)Mo(CO)(2)(C(3)H(6))(FBF(3))] affords the C-S bond cleavage product [(η(5)-Ind)Mo(CO)(κ(3)-1,4,7-trithiaheptanate)]BF(4) (6), which has been characterised by X-ray crystallography (Ind = C(9)H(7), indenyl). In contrast to ttcn, the macrocycles 1,3,5-trithiane (tt) and 1,4,7,10-tetrathiacyclododecane (ttcd) fail to induce changes in the coordination mode of indenyl: tt and ttcd react with [(η(5)-Ind)Mo(CO)(2)(NCMe)(2)](+) (or [(η(5)-Ind)Mo(CO)(2)(κ(2)-dme)](+)) to give [(η(5)-Ind)Mo(CO)(2)(κ(2)-tt)](+) (2), characterised by X-ray crystallography, and [(η(5)-Ind)Mo(CO)(2)(κ(2)-ttcd)](+) (3), respectively. The cyclopentadienyl (Cp = C(5)H(5)) analogues [(η(5)-CpMo(CO)(2)(κ(2)-tt)](+) (4) and [(η(5)-CpMo(CO)(2)(κ(2)-ttcn)](+) (5) have also been synthesised and 5 characterised by X-ray crystallography. DFT calculations showed that the η(5)-Ind/Cp coordination mode is always the most stable. However, a molecular dynamics study of the macrocycles conformations revealed that the major conformer of ttcn was a chair, which favoured κ(3) coordination. As indenyl complexes undergo slippage with a small barrier (<10 kcal mol(-1)), the kinetically preferred species [(η(3)-Ind)Mo(CO)(2)(κ(3)-ttcn)](+) (1) is the observed one. The conversion to 6 proceeds stepwise, with loss of ethylene followed by loss of CO, as calculated by DFT, with a barrier of 38.7 kcal mol(-1), consistent with the slow uncatalysed reaction.  相似文献   

17.
1 INTRODUCTIONRareEarth (RE)elementsareappliedinagricultureandmedicine .Therfore,betterunderstandingofthebondingofREionsinthecomplexeswithaminoacidsisnecessary .ThecrystalstructureofREcomplexeswiththesimplestaminoacidglycinewerestudiedbefore[1- 4].Toresearch…  相似文献   

18.
The complex formation in water between the stable tricarbonyltriaqua fac-[(CO)(3)Re(H(2)O)(3)](+) (1) complex and N- and S-donor ligands has been studied by high-pressure (1)H NMR. Rate and equilibrium constants for the formation of [(CO)(3)Re(Pyz)(H(2)O)(2)](+), [(CO)(3)(H(2)O)(2)Re(mu-Pyz)Re(H(2)O)(2)(CO)(3)](2+), [(CO)(3)Re(THT)(H(2)O)(2)](+), and [(CO)(3)Re(DMS)(n)()(H(2)O)(3-n)](+) (n = 1-3) (Pyz = pyrazine, THT = tetrahydrothiophene, DMS = dimethyl sulfide) have been determined and are in accord with previous results (Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; K?lle, U.; Hall, S. Inorg. Chem. 2003, 42, 3516). The calculated interchange rate constant k(1)' (Eigen-Wilkins mechanism) increases from the hard O- and N-donors to the soft S-donors, as exemplified by the following series: TFA (trifluoroacetate) (k(1)' = 2.9 x 10(-3) s(-1)) < Br(-) < CH(3)CN < Pyz < THT < DMS < TU (thiourea) (k(1)' = 41.5 x 10(-3) s(-1)). On the other hand, values remain close to that of water exchange k(ex) on 1 (k(ex) = 6.3 x 10(-3) s(-1)). Thus, an I(d) mechanism was assigned, suggesting however the possibility of a slight deviation toward an associatively activated mechanism with the S-donor ligands. Activation volumes determined by high-pressure NMR, for Pyz as Delta V(++)(f,1) = +5.4 +/- 1.5, Delta V(++)(r,1) = +7.9 +/- 1.2 cm(3) mol(-)(1), for THT as Delta V(++)(f,1) = -6.6 +/- 1, Delta V(++)(r,1) = -6.2 +/- 1 cm(3) mol(-1), and for DMS as Delta V(++)(f,1) = -12 +/- 1, Delta V(++)(r,1) = -10 +/- 2 cm(3) mol(-1) revealed the ambivalent character of 1 toward water substitution. Hence, these findings are interpreted as a gradual changeover of the reaction mechanism from a dissociatively activated one (I(d)), with the hard O- and N-donor ligands, to an associatively activated one (I(a)), with the soft S-donor ligands.  相似文献   

19.
The syntheses and characterization of two new, highly soluble, single-molecule magnets [Mn12O12(CF3COO16(H2O)4].2CF3COOH.4H2O (1) and Mn12O12(CF3COO16(H2O)4].CF3COOH.7H2O (2) are reported. Compound 1 was isolated from the reaction of Mn12O12(CF3COO16(H2O)4] with trifluoroacetic acid in CH2Cl2. Compound 1 crystallizes in the tetragonal space group Ifourmacr; (No. 82) with unit cell parameters a = b = 18.128(3) A, c = 13.048(3) A, V = 4287.9(19) A3, Z = 2 and is isostructural to [Mn12O12(CH3COO)16(H2O)4]. Compound 2 was prepared from the reaction of Mn12O12(CF3COO16(H2O)4] with neat trifluoroacetic acid, and crystallizes in the monoclinic space group P2(1)/n (No. 14) with unit cell parameters a = 15.221(8) A, b = 21.870(12) A, c = 27.217(15) A, beta = 90.53(1) degrees, V = 9060(9) A3, and Z = 4. The dc magnetic susceptibility measurements in the 2-300 K temperature range support a high-spin ground state. The magnetization data collected in the 1-7 T field range from 1.8 to 4.0 K were best fit to the parameters S = 10, g = 2.15, D = -0.65 cm(-1), and E = 0 cm(-1) for 1 and S = 10, g = 1.87, D = -0.34 cm(-1), and E = -0.10 cm(-1) for 2. The ac susceptibility data for compound 1 reveal out-of-phase (chi(m)") signals in the 4-7 K temperature range, whereas the chi(m)" signals for compound 2 appear below temperatures of 4 K. This variation in blocking temperatures is a consequence of the two different crystallographic forms of compounds 1 and 2. Compound 1 exhibits the same structural geometry and distortions found in [Mn12O12(CH3COO)16(H2O)4], while compound 2 is of lower molecular symmetry with two Jahn-Teller axes of distortion being oriented along oxide ligands. This different structural arrangement facilitates a different tunneling pathway that leads to a lower effective barrier for magnetization reorientation for compound 2. The substitution of the acetate ligands by trifluoroacetic acid was monitored by mass spectrometry, which is a convenient tool for judging completion of the substitution process.  相似文献   

20.
The following five antimony(V) tetraphenylporphyrins with sigma-bonded antimony-carbon bonds were synthesized: [(TPP)Sb(CH(3))(2)](+)PF(6)(-), [(TPP)Sb(OCH(3))(OH)](+)PF(6)(-), [(TPP)Sb(CH(3))(OH)](+)ClO(4)(-), [(TPP)Sb(CH(3))(OCH(3))](+)ClO(4)(-), and [(TPP)Sb(CH(3))(F)](+)PF(6)(-). Each compound is stable toward air and moisture and has a high melting point (>250 degrees C). The electrochemistry and spectroelectrochemistry of these sigma-bonded porphyrins were examined in benzonitrile or dichloromethane containing 0.1 M tetrabutylammonium perchlorate as supporting electrolyte and the data compared to those for three previously synthesized OEP derivatives containing similar sigma-bonded and/or anionic axial ligands. Each porphyrin shows two reversible reductions and up to a maximun of one oxidation within the potential window of the solvent. Spectroelectrochemical data indicate formation of a porphyrin pi anion radical upon the first reduction as do ESR spectra of the singly reduced species. However, a small amount of the Sb(III) porphyrin products may be generated via a chemical reaction following electron tranfer. An X-ray crystallographic analysis of [(TPP)Sb(CH(3))(F)](+)PF(6)(-) is also presented: monoclinic, space group C2/c, Z = 8, a = 24.068(5) ?, b = 19.456(4) ?, c = 18.745(3) ?, beta = 94.69(2) degrees, R = 0.056.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号