首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于β-环糊精(β-CD)和间甲基苯甲酸(mTA)的主客体识别,建立了均相DNA杂交电化学生物传感技术。将主体分子β-CD通过电化学聚合的方法固定在氮乙酰基苯胺修饰的玻碳电极表面,同时将mTA通过酸胺缩合反应标记在探针DNA序列上,与目标DNA在溶液均相中杂交之后,用修饰好的电极对探针DNA上的mTA进行主客体识别。以两种嵌入剂作为电化学指示剂——亚甲基蓝(MB)和道诺霉素(DNM),证实了方法的可行性。MB的电化学信号与完全互补DNA浓度在2.0×10"12~2.0×10"10mol/L之间呈良好线性关系,检出限为7.6×10"13mol/L;DNM的电化学响应与完全互补DNA浓度在1.0×10"12~1.0×10"9mol/L之间呈良好线性关系,检出限可达6.0×10"13mol/L,并表现出良好的重现性和稳定性。  相似文献   

2.
本文构建了一种基于纳米粒子、茎环DNA和丝网印刷电极(SPCE)的电化学生物传感技术用于乳腺癌基因的快速、灵敏检测。该传感技术中,探针DNA的两端分别标记了巯基和生物素,巯基用于与金纳米粒子(AuNPs)作用,生物素用于与磁性纳米颗粒(MNPs)表面修饰的链酶亲和素作用以达到富集的目的,之后利用SPCE进行电化学检测。无目标DNA存在时,双标记DNA保持茎环结构,使得生物素分子很难和MNPs上的亲和素接触。一旦加入目标DNA,茎环结构打开,生物素得以与MNPs上的链霉亲和素发生特异性结合,形成的复合物(MNPs-DNA-AuNPs)通过磁性富集到SPCE表面,从而获得AuNPs的电化学信号。该DNA电化学生物传感对单碱基错配有良好的分辨能力,完全互补DNA的检出限为8.0×10-13 mol/L。  相似文献   

3.
利用主客体识别作用赋予材料智能化是目前智能材料研究的一个新方向.通过光可以使客体分子发生可逆的结构改变,如偶氮苯可逆的光致顺反异构,结合环糊精主体分子和客体分子之间可逆形成包结物的能力,可以利用光来设计光控的智能超分子体系.基于上述环糊精和客体分子之间的光控制的主客体识别作用,本文从有机小分子、聚合物和表面三个方面综述了近年来基于主客体识别作用的光控智能超分子体系的研究工作,并对该领域的研究前景进行了展望.  相似文献   

4.
韩苗苗  王萍  席守民 《分析测试学报》2020,39(12):1466-1472
该文以DNA四面体纳米结构探针(TSP)为捕获探针,将辣根过氧化物酶标记的IgG抗体结合在纳米金颗粒表面(AuNPs-IgG-HRP)作为信号分子,构建了一种新型DNA甲基化电化学传感器。利用一步热变性法组装成TSP后,通过Au—S键固定在修饰纳米金颗粒的金电极表面,经过靶标DNA杂交、5-甲基胞嘧啶(5-mc)抗体及AuNPs-IgG-HRP结合后,用差分脉冲伏安法(DPV)进行检测。采用循环伏安法(CV)和电化学阻抗谱(EIS)对修饰电极的构建过程进行电化学表征。探究了杂交时间、5-mc抗体浓度、IgG-HRP加入体积、氢醌(HQ)和过氧化氢(H2O2)浓度对传感器的影响。在最佳条件下,该传感器对甲基化DNA的线性响应范围为1.0×10-15~1.0×10-10 mol/L,检出限(S/N=3)为4.4×10-16 mol/L。该传感器具有良好的选择性和稳定性,为DNA甲基化检测提供了新方法。  相似文献   

5.
使用联吡啶钌(Ru(bpy)32+)/β-环糊精-金纳米粒子(β-CD-AuNPs)/全氟磺酸(Nafion)复合物和二茂铁标记(Fc)的DNA探针(Fc-DNA)构建了电化学发光(Electrochemiluminescence,ECL)生物传感器,将其用于检测中药材丹参中的汞离子。 该传感器包含ECL发光基底和ECL强度开关两部分,将Ru(bpy)32+/β-CD-AuNPs/Nafion组装到玻碳电极(GCE)上构成发光基底,产生稳定的ECL信号;Fc-DNA探针作为ECL信号开关,通过分子识别策略设计,利用β-CD与Fc的主客体相互作用与β-CD-AuNPs相连。 该检测方法和以往的汞离子检测方法相比,具有背景信号低、选择性高、仪器简单、操作快速等特点。 该 “Off-On” 电致化学发光生物传感器在0.04~800 ng/mL范围内对Hg2+具有良好的线性响应,检测限为0.02 ng/mL(S/N=3)。  相似文献   

6.
本文用乙基-(3-二甲基丙基)碳二亚胺盐酸盐(EDC)和羟基丁二酰亚胺(NHS)活化已被氧化的石墨电极,然后将单链DNA(ssDNA-1)固定在石墨电极上。运用核酸杂交技术,使具有电化学活性的染料Hoechst 33258 嵌入双链DNA 分子(dsDNA)的碱基对中,在石墨电极表面形成dsDNA-Hoechst 33258 层,通过伏安法测定嵌入Hoechst 33258的氧化峰电流,可以识别和测定溶液中互补的ssDNA-2 片段,ssDNA-2 的浓度在4.8×10- 5~1.1×10- 7 m g/m L范围内,有线性关系,检测限可达6.0×10- 8 m g/m L。  相似文献   

7.
纳米金颗粒具有高的消光系数和良好的表面等离子体共振特性, 其等离子体共振特性受纳米金颗粒的尺寸和周围环境等因素的影响. 本文基于半导体纳米晶电化学发光信号对金纳米颗粒的距离依赖性制备了DNA电化学发光传感器. 首先利用循环伏安法(CV)在玻碳电极(GCE)表面原位沉积金纳米颗粒(AuNPs), 巯基丙酸包裹的CdS量子点(QDs)与氨基修饰的双链DNA (dsDNA)通过酰胺键缩合, 形成量子点修饰的双链DNA(QDs-dsDNA). 最后将QDs-dsDNA 通过dsDNA 另一端的巯基组装到纳米金表面, 得到CdS QDs-DNA/AuNPs/GCE电化学发光传感器. 在优化电极表面QDs-dsDNA密度、金纳米颗粒沉积方法等实验条件的基础上, 对不同传感器的表面性质进行了表征, 如形貌和电化学阻抗等. 进一步通过控制纳米金和CdS QDs之间的DNA研究了纳米金对CdS QDs发光信号的影响作用. 结果显示DNA链的长度和类型对发光信号有着重要的影响. 最后将此传感器用于环境污染物的DNA损伤检测, 显示出很好的灵敏响应.  相似文献   

8.
DNA分子识别及传感技术   总被引:3,自引:0,他引:3  
林琳  江龙 《化学通报》2001,64(5):261-267
DNA杂交生物传感器为基因的识别及疾病的诊断提供了一种快速,简便,廉价的方法,此文从DNA的固定及检测技术两个方面,举例介绍了各不同方式的研究应用现状及对传感器灵敏度,杂交专一性,杂交速度及使用寿命的影响,对DNA识别技术的发展前景进行了展望。  相似文献   

9.
纳米金是金的微小颗粒,在水溶液中以胶体金的形态存在。胶体金的颜色会随着其粒径及表面修饰差异而发生变化,这种颜色变化可通过肉眼观察;同时,这种改变会产生强烈的光散射或光吸收信号。基于这种信号而建立的纳米金比色检测法,已被广泛用于生物分子(如核酸、蛋白质、多糖甚至是细胞)的检测。DNA功能化纳米生物传感器是利用核酸碱基配对原则进行识别,能实现特定基因片段的持续、快速、灵敏和选择性检测。本文结合最近十年的研究现状,主要论述了DNA功能化纳米金用于比色检测法的原理及用于核酸、蛋白质和部分生物小分子的检测,并评述了其中的挑战和前景。  相似文献   

10.
纳米金是金的微小颗粒,在水溶液中以胶体金的形态存在。胶体金的颜色会随着其粒径及表面修饰差异而发生变化,这种颜色变化可通过肉眼观察;同时,这种改变会产生强烈的光散射或光吸收信号。基于这种信号而建立的纳米金比色检测法,已被广泛用于生物分子(如核酸、蛋白质、多糖甚至是细胞)的检测。DNA功能化纳米生物传感器是利用核酸碱基配对原则进行识别,能实现特定基因片段的持续、快速、灵敏和选择性检测。本文结合最近十年的研究现状,主要论述了DNA功能化纳米金用于比色检测法的原理及用于核酸、蛋白质和部分生物小分子的检测,并评述了其中的挑战和前景。  相似文献   

11.
基于纳米金胶标记DNA探针的电化学DNA传感器研究   总被引:6,自引:0,他引:6  
以纳米金胶为标记物,将其标记于人工合成的5-端巯基修饰的寡聚核苷酸片段上,制成了具有电化学活性的金胶标记DNA电化学探针;在一定条件下,使其与固定在玻碳电极表面的靶序列进行杂交反应,利用ssDNA与其互补链杂交的高度序列选择性和极强的分子识别能力,以及纳米金胶的电化学活性,实现对特定序列DNA片段的电化学检测以及对DNA碱基突变的识别.  相似文献   

12.
功能化纳米金放大的DNA电化学传感器研究   总被引:7,自引:0,他引:7  
研究了DNA夹心杂交和直接杂交体系,将功能化纳米金引入到标记有生物素的杂交双链上,制成具有电化学活性和纳米金放大作用的DNA电化学传感器,采用循环伏安法测试.在夹心杂交体系中,靶点DNA浓度与阳极峰电流关系曲线的相对标准偏差为3.0%~13.0%,在浓度为6.9×10-3~0.14nmol/L范围内得到良好的线性关系,检测限达到2.0×10-3nmol/L,实现了对单碱基突变的高灵敏检测和序列识别.直接杂交检测限为2.5×10-4mol/L,分别在2.5×10-4~5.0×10-3nmol/L和5.0×10-3~10nmol/L范围内得到峰电量与浓度的良好线性关系.并比较这两种体系.  相似文献   

13.
尚青青  白阳  杨靖  步怀天 《化学通报》2022,85(3):287-296
近年来,基于主客体相互作用的超分子纳米载体因其独特的自组装特性在癌症治疗领域引起了广泛的关注。柱芳烃作为一种新型的大环分子,因其独特的化学结构和优越的主客体包合能力而成为近年来研究的热点。本文根据不同的治疗机制综述了柱状链纳米载体及其在化疗、光动力治疗、联合治疗等领域的应用。在此基础上,展望了柱芳烃基纳米载体的研究方向和发展趋势。  相似文献   

14.
纳米粒子在电化学DNA生物传感器研究中的应用   总被引:2,自引:0,他引:2  
简要介绍了电化学DNA生物传感器的原理和分类,对纳米粒子在电化学DNA生物传感器研究中的应用进行了详细评述.  相似文献   

15.
张晗  丁家旺  秦伟 《化学进展》2021,33(10):1756-1765
多肽具有分子量小、易于合成、生物兼容性好、稳定性高及序列灵活多样等优点.因此,多肽作为新型生物识别元件,已被广泛应用于生物传感器的构建.电化学分析灵敏度高、准确度好、设备简单、检测范围广且易于操作.本文介绍了基于多肽识别的电化学生物传感器技术,包括多肽的修饰与固定化、多肽与待测物的识别及检测原理;综述了近五年多肽电化学...  相似文献   

16.
综述了近年来纳米金在DNA生物传感器及基因芯片中的研究、应用和发展,并对其在生物科技方面的发展趋势进行了展望。参考文献31篇。  相似文献   

17.
基于金纳米颗粒(AuNPs)比表面积大、 尺寸小和能够承载大量DNA片段的特点, 建立了一种免标记、 简便、 快速检测DNA聚合酶Klenow fragment exo-(KF-)的电化学方法. 首先将巯基化的DNA引物片段修饰在金电极上, 然后加入模板DNA链以及修饰有报告DNA链的金纳米颗粒(AuNPs-DNA), 模板DNA链能同时与DNA引物片段和修饰在AuNPs上的报告DNA链进行互补杂交形成"三明治"结构, 从而将AuNPs-DNA修饰在电极表面; 当加入电活性物质钌铵(RuHex)后, RuHex可通过静电吸附作用结合在DNA上. AuNPs上修饰的报告DNA链能够吸附大量RuHex, 导致电化学信号放大. 当加入脱氧核糖核苷三磷酸(dNTPs)以及KF-聚合酶后, 引物片段发生延伸反应, 将与模板DNA链杂交的AuNPs-DNA竞争下来, 带走大量的RuHex, 使电信号降低, 从而实现对聚合酶的检测. 实验结果表明, 利用该方法可以检测到5 U/mL的KF-.  相似文献   

18.
用模板法在氧化铟锡(ITO)电极上制备具有三维有序多孔结构的金掺杂纳米二氧化钛修饰电极(3DOM GTD/ITO),扫描电镜(SEM)结果表明,制备的修饰电极三维结构规整有序、孔径均一。将标记有二茂铁(Fc)的DNA探针修饰到3DOM GTD/ITO电极上构建了一种新的标记型DNA生物传感器,通过Fc在DNA探针杂交前后的电化学信号变化可识别目标靶序列。采用循环伏安(CV)、示差脉冲(DPV)和交流阻抗(EIS)等方法对DNA探针在电极表面的固定和杂交进行表征。实验结果表明,该DNA生物传感器可以成功地识别乳腺癌基因靶序列,Fc的氧化还原电流与靶序列浓度在8.0×10-7~1.0×10-5 mol/L范围内呈线性关系,线性相关系数为0.9908,检测限为5.2×10-7 mol/L。  相似文献   

19.
在玻碳电极(GCE)上采用循环伏安法电聚合硫堇(PTh)得到PTh/GCE修饰电极,并利用聚硫堇层共价结合和静电作用吸附金纳米粒子(AuNP′s)制得AuNP′s/PTh/GCE修饰电极。然后通过将ss-DNA/AuNP′s/PTh修饰电极置于cDNA杂交液中,于42℃杂交制得ds-DNA/AuNP′s/PTh修饰玻碳电极,实现了脱氧核糖核酸(DNA)探针在AuNP′s/PTh修饰的玻碳电极上的固定,制得DNA电化学生物传感器。在[Fe(CN)6]3-/4-溶液中采用微分脉冲伏安法(DPV)及交流阻抗谱技术(EIS)对DNA的固定和杂交进行了表征。试验结果表明:在1.0×10-10~1.0×10-6mol.L-1的浓度范围内,该传感器可对转基因植物外源基因草丁膦乙酰转移酶基因(PAT基因)片段进行检测,检出限(3s)为3.2×10-11mol.L-1。  相似文献   

20.
适配体功能化DNA纳米结构是构建新型生物传感器的理想材料,为临床诊断、食品安全、环境监测等领域提供了材料基础。本文介绍了核酸适配体在功能化DNA纳米结构中的作用,论述了适配体功能化DNA纳米结构的构建方法,以及其在基于固定化和构象开关的电化学生物传感器的最新应用研究。本文为适配体功能化DNA生物传感器的构建提供了制备方法以及生物传感策略等方面的参考,并展望了以适配体功能化DNA纳米结构为材料的生物传感器的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号