首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

2.
Densities of binary mixtures of N-(2-hydroxyethyl)morpholine with ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol were measured over the entire composition range at temperatures from (293.15 to 323.15) K and atmospheric pressure using a vibrating-tube densimeter. The excess molar volumes, VE were calculated from density data and fitted to the Redlich–Kister polynomial equation. Apparent molar volumes, partial molar volume at infinite dilution and the thermal expansion coefficient of the mixtures were also calculated. The VE values were found to be negative over the entire composition range and at all temperatures studied and become less negative with increasing carbon chain length of the alkanols.  相似文献   

3.
A highly accurate P, V, T,x model is developed for aqueous chloride solutions of the binary systems, viz. (LiCl + H2O), (NaCl + H2O), (KCl + H2O), (MgCl2 + H2O), (CaCl2 + H2O), (SrCl2 + H2O), and (BaCl2 + H2O). The applied ranges of temperature, pressure, and concentrations for the systems (LiCl + H2O), (NaCl + H2O), (KCl + H2O), (MgCl2 + H2O), (CaCl2 + H2O), (SrCl2 + H2O), and (BaCl2 + H2O) are (273 K to 564 K, 0.1 MPa to 40 MPa, and 0 to 10 molal), (273 K to 573 K, 0.1 MPa to 100 MPa, and 0 to 6.0 molal), (273 K to 543 K, 0.1 MPa to 50 MPa, and 0 to 4.5 molal), (273 K to 543 K, 0.1 MPa to 40 MPa, and 0 to 3.0 molal), (273 K to 523 K, 0.1 MPa to 60 MPa, and 0 to 6.0 molal), (298 K to 473 K, 0.1 MPa to 2 MPa, and 0 to 2.0 molal) and (273 K to 473 K, 0.1 MPa to 20 MPa, and 0 to 1.6 molal), respectively. Comparison of the model with thousands of experimental data points concludes that the average deviation over the above T, P, m range is 0.020% to 0.066% in density (or volume) for these systems, which indicates high accuracy. From this model, various volumetric properties, such as the apparent molar volume at infinite dilution and isochores of fluid inclusions, can be calculated, thus having a wide range of geological applications, such as reservoir fluid flow simulation and fluid-inclusion study. A computer code is developed for this model and can be downloaded from the website: www.geochem-model.org/programs.htm and online calculations is made available on: www.geochem-model.org/models.htm  相似文献   

4.
New solubility and liquid–liquid equilibrium (LLE) data of solutions of (water + ethanol + α,α,α-trifluorotoluene) are determined at three temperatures (288.15, 298.15, and 308.15) K and atmospheric pressure. The solubility and LLE data are correlated quantitatively by empirical equations, NRTL, and UNIQUAC models. The effect of temperature upon miscibility of the ternary systems is small. Practically, α,α,α-trifluorotoluene is capable to extract efficiently ethanol from its dilute aqueous solutions to obtain absolute alcohol.  相似文献   

5.
A flow-mixing isothermal microcalorimeter was used to measure excess molar enthalpies for four binary systems of {diethyl oxalate + (methanol, + ethanol, + 1-propanol, and + 2-propanol)} at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. The densities of the diethyl oxalate at different temperature were measured by using a vibrating-tube densimeter. All systems exhibit endothermic behaviour over the whole composition range, which means that the rupture of interactions is energetically the main effect. The excess molar enthalpies increase with temperature and the molecular size of the alcohols. The experimental results were correlated by using the Redlich–Kister equation and two local-composition models (NRTL and UNIQUAC).  相似文献   

6.
(Liquid + liquid) equilibrium (LLE) data for {water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol)} at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure (≈95 kPa) were determined by Karl Fischer titration and densimetry. All systems present type I binodal curves. The size of immiscibility region changes little with an increase in temperature, but increases according to the solvent, following the order: 2-butanol < 1-butanol < 1-pentanol. Values of solute distribution and solvent selectivities show that 1-pentanol is a better solvent than 1-butanol or 2-butanol for acrylic acid removal from water solutions. Quality of data was ascertain by Hand and Othmer-Tobias equations, giving R2 > 0.916, mass balance and accordance between tie lines and cloud points. The NRTL model was used to correlate experimental data, by estimating new energy parameters, with root mean square deviations below 0.0053 for all systems.  相似文献   

7.
(Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.  相似文献   

8.
9.
《Chemical physics letters》1999,291(3-4):239-247
Standard enthalpies of formation of ROX (R=H, CH3; X=F, Cl, Br) compounds were theoretically estimated using hydrogenation reactions as working chemical reactions. Energy differences were computed at four ab initio levels of calculation, using gaussian-2 (G2) theory (Level I), coupled-cluster theory with split-valence basis set (Level II), coupled-cluster theory with triple-zeta basis set (Level III), and Truhlar's basis-set limit method (Level IV). The recommended standard enthalpies of formation (at 298.15 K and 1.0 atm) are the unweighted averages of the results obtained at Levels I and IV from the different hydrogenation reactions, namely: FOH, −21.1±0.3; ClOH, −18.5±0.5; BrOH, −15.2±1.1; CH3OF, −19.1±2.1; CH3OCl, −13.2±2.3, and CH3OBr, −8.7±2.7 kcal mol−1.  相似文献   

10.
The isothermal and isobaric (vapour  +  liquid) equilibria (v.l.e.) for (N, N - dimethylformamide  +  2-propanol  +  1-butanol) and the binary constituent mixtures were measured with an inclined ebulliometer. The experimental results are analyzed using the UNIQUAC equation with temperature-dependent binary parameters. The comparison between the experimental and literature results for binary systems is given. The ternary v.l.e. values are predicted from the binary results.  相似文献   

11.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl3 and the (Na,K)2(Mg,Mn,Fe,Co,Ni)Cl4 solid solutions were modeled using the Compound Energy Formalism.  相似文献   

12.
Densities (ρ) for binary systems of (1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene + propyl acetate, or butyl acetate) were determined at four temperatures (298.15, 303.15, 308.15, and 313.15) K over the full mole fraction range. The excess molar volumes (VE) calculated from the density data show that the deviations from ideal behaviour in the systems (all being positive, excepting 1,2,4-trimethylbenzene + butyl acetate system) become more positive with the temperature increasing. Surface tensions (σ) of these binary systems were measured at the same temperatures (298.15, 303.15, 308.15, and 313.15) K by the pendant drop method, the surface tension deviations (δσ) for all system are negative, and decrease with the temperature increasing. The VE and δσ are fitted to the Redlich–Kister polynomial equation. Surface tensions were also used to estimate surface entropy (Sσ) and surface enthalpy (Hσ).  相似文献   

13.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

14.
Experimental (liquid + liquid) equilibrium (LLE) data for a ternary system containing (ethylene glycol + benzene + cyclohexane) were determined at temperatures (298.15, 308.15, and 318.15) K and at atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvent for extraction of benzene from cyclohexane. The effect of temperature in extraction of benzene from the (benzene + cyclohexane) mixture indicated that at lower temperatures the selectivity (S) is higher, but the distribution coefficient (K) is rather lower. The LLE results for the system studied were used to obtain binary interaction parameters in the UNIQUAC and NRTL models by minimizing the root mean square deviations (RMSD) between the experimental results and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The NRTL model fits the (liquid + liquid) equilibrium data of the mixture studied slightly better. The root mean square deviations (RMSDs) obtained comparing calculated and experimental two-phase compositions are 0.92% for the NRTL model and 0.95% for the UNIQUAC model.  相似文献   

15.
(Liquid + liquid) equilibria (LLE) data were presented for one ternary system of {water + octane + diisopropyl ether (DIPE)} and three quaternary systems of (water + 1-propanol + DIPE + octane, or methylbenzene, or heptane) at T = 298.15 K and p = 100 kPa. The experimental LLE data were correlated with the modified and extended UNIQUAC models. Distribution coefficients were derived from the experimental LLE data to evaluate the solubility behavior of components in organic and aqueous phases.  相似文献   

16.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

17.
(Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.  相似文献   

18.
(Liquid + liquid equilibrium) (LLE) data for ternary system: (water + 2,3-butanediol + oleyl alcohol) has been measured at T = (300.2, 307.2, and 314.2) K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The nonrandom two liquids equation (NRTL) was used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that NRTL could give a good correlation for the LLE data. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

19.
Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH3COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH3CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH3COOK) or (LiBr + CH3CH(OH)COONa) and refrigerant H2O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion.  相似文献   

20.
This work demonstrates the ability of N-formylmorpholine (NFM) to act as an extraction solvent for the removal of benzene from its mixture with cyclohexane. The (liquid + liquid) equilibria (LLE) were measured for a ternary system of {N-formylmorpholine (NFM) + benzene + cyclohexane} under atmospheric pressure and at temperatures (303.15, 308.15, and 313.15) K. The experimental distribution coefficients (K) and selectivity factors (S) were obtained to reveal the extractive effectiveness of the solvent for separation of benzene from cyclohexane. The LLE results for the system studied indicate that increasing temperature decreases selectivity of the solvent. The reliability of the experimental results was tested by applying the Othmer–Tobias correlation. In addition, the universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to correlate the LLE data using the interaction parameters determined from the experimental data. The root mean square deviations (RMSDs) obtained comparing calculated and experimental two-phase compositions are 0.0367 for the NRTL model and 0.0539 for the UNIQUAC model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号