首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new ion exchange material prepared by impregnating Aliquat-336 on silica-gel has been investigated for the recovery of plutonium from nitric-oxalic acid solutions. The distribution ratio of Pu(IV) was studied at various concentrations of nitric and oxalic acids. The presence of Al(III) and Fe(III) in the solution, enhances the uptake of Pu(IV). Pu(IV) breakthrough capacities (btc) have been determined using 2.5 ml bed of the ion exchange material column in the absence and the presence of Al(III) and Fe(III) nitrate. The elution behavior of Pu(IV) was also studied using nitric acid solutions containing reducing agents. More than 90% of plutonium could be recovered from nitric-oxalic acid solutions.  相似文献   

2.
3.
Graphene oxide (GO) is one of the most important carbon nano-materials. In this paper, GO was synthesized from flake graphite and characterized by transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The sorption of Th(IV) on GO was investigated as a function of contact time, solid-to-liquid ratio, pH, ionic strength, and in the presence of fulvic acid (FA) and humic acid (HA) by batch experiments. The sorption percentage of Th(IV) on GO decreased with increasing ionic strength and decreasing solid-to-liquid ratio. The sorption edge of Th(IV) in the presence of FA/HA is much lower than that in the absence of FA/HA. Furthermore, the sorption processes of Th(IV) can be described by a pseudo-second order rate model. Based on the Langmuir model, the maximum sorption capacities (Csmax) of Th(IV) were about 5.80 × 10?4 mol/L. From thermodynamic investigation, sorption of Th(IV) on GO is spontaneous and endothermic in nature. The rapid sorption rate and high sorption capacity suggest that GO is a promising adsorbent for Th(IV).  相似文献   

4.
The possibility of the highly sensitive sorption-spectrometric determination of Th(IV) and U(VI) in the presence of each other on the solid phase of fibrous anion-exchange materials with Arsenazo M and Arsenazo III was examined. Polyacrylonitrile fiber filled with an exchanger AN-31, ANKB-50, or EDE-10p was used as the solid phase. It was demonstrated that the studied systems allow the selective determination of thorium in the presence of one-to twofold amounts of uranium. On PANV-EDE-10p with immobilized Arsenazo III, the detection limit of thorium in 2–10 M HCl is 0.002 μg/mL, and in 10 M HCl the presence of up to twofold amounts of uranium is permissible. A high sensitivity of the determination of uranium in 2–7 M HCl of 0.005 μg/mL, which has not been reported before, was attained. The time of the analysis of five or six samples is no longer than 20 min.  相似文献   

5.
6.
Los Alamos National Laboratory (LANL) has evaluated different techniques to concentrate and remove plutonium from solutions stored at the Rocky Flats Environmental Technology Site (RFETS). Pu(III) oxalate precipitation was chosen to treat nitric acid solutions because it is a simple and efficient technique for removing plutonium. Reducing Pu(IV) to Pu(III) is a key process step which affects the rest of the processing sequence. Because of differences in the literature1 over the kinetics of the reaction, additional data was obtained and compared with existing data to examine the kinetic relationship, and determine an appropriate relationship for future engineering evaluations. The results and conclusions of this work, along with new experimental data, are presented.  相似文献   

7.
The sorption of Pu(VI) onto TiO(2) was studied as a function of pH (2-10) and Pu concentration (10(-8)-10(-4) M) under an N(2) atmosphere, in 0.016 and 0.1 M NaClO(4). A batch-wise method was used, in which pH was measured in separate experimental containers after removal of a sample to determine the amount of Pu that had been sorbed. As Pu is radioactive, it was used as a tracer and measured by liquid scintillation counting. No ionic strength dependence was discerned, which was taken as an indication of inner sphere complex formation. In the interval of pH 2-7 the system could be described by the formation of two positively charged surface complexes using a 1-pK Stern model. Sorption of the plutonyl ion (PuO(2)(2+)) and the first hydrolysis species (PuO(2)(OH)(+)) was estimated using FITEQL to logK(1)=6.9 and logK(2)=1.4, respectively.  相似文献   

8.
Solutions of HTTA are known to extract tetravalent actinides as M(TTA)4 species. When TOPO is added to HTTA solutions, the extracting of Np(IV) and Pu(IV) from aqueous perchloric acid was enhanced enormously. The species responsible for the enhanced extraction were identified from the extraction data by the slope ratio method and JOB's method. It was found that the predominant species responsible for enhancement in the extraction, when [HTTA]≫[TOPO], was M(TTA)4. TOPO for both Np(IV) and Pu(IV). Furthermore, it was established that depending on the relative concentrations of HTTA and TOPO, a number of species with the composition M(TTA)a(ClO4)4-a·b TOPO, with a ranging from 1 to 4 and b having values of 1 or 2, are involved in the extraction. Several equilibrium constant values are given. Fuel Reprocessing Division.  相似文献   

9.
The bioavailability and mobility of Pu species can be profoundly affected by siderophores and other oxygen-rich organic ligands. Pu(IV)(siderophore) complexes are generally soluble and may constitute with other soluble organo-Pu(IV) complexes the main fraction of soluble Pu(IV) in the environment. In order to understand the impact of siderophores on the behavior of Pu species, it is important to characterize the formation and redox behavior of Pu(siderophore) complexes. In this work, desferrioxamine B (DFO-B) was investigated for its capacity to bind Pu(IV) as a model siderophore and the properties of the complexes formed were characterized by optical spectroscopy measurements. In a 1:1 Pu(IV)/DFO-B ratio, the complexes Pu(IV)(H2DFO-B)4+, Pu(IV)(H1DFO-B)3+, Pu(IV)(DFO-B)2+, and Pu(IV)(DFO-B)(OH)+ form with corresponding thermodynamic stability constants log beta1,1,2 = 35.48, log beta1,1,1 = 34.87, log beta1,1,0 = 33.98, and log beta1,1,-1 = 27.33, respectively. In the presence of excess DFO-B, the complex Pu(IV)H2(DFO-B)22+ forms with the formation constant log beta2,1,2 = 62.30. The redox potential of the complex Pu(IV)H2(DFO-B)22+ was determined by cyclic voltammetry to be E1/2 = -0.509 V, and the redox potential of the complex Pu(IV)(DFO-B)2+ was estimated to be E1/2 = -0.269 V. The redox properties of Pu(IV)(DFO-B)2+ complexes indicate that Pu(III)(siderophore) complexes are more than 20 orders of magnitude less stable than their Pu(IV) analogues. This indicates that under reducing conditions, stable Pu(siderophore) complexes are unlikely to persist.  相似文献   

10.
《Polyhedron》1988,7(18):1767-1771
The complexes [MOCl2(dmpe)(PMe3)] and [MOCl2(dmpe)2]Cl (M = Mo, W; dmpe = Me2PCH2CH2PMe2) have been prepared by reaction of the oxo compounds [MOCl2(PMe3)3] with equivalent amounts of the dmpe ligand under appropriate conditions. The dark blue tungsten species [WOCl2(dmpe)(PMe3)] forms only slowly but reacts readily with more dmpe to afford [WOCl(dmpe)2]Cl. This prevents isolation of the former in a pure form. The related isocyanide derivatives [MOCl2(CNR)(PMe3)2], (M = Mo; R = CMe3 and C6H11; M = W, R = CMe3) have been obtained similarly by reaction of the [MOCl2(PMe3)3] complexes with the stoichiometric amount of the isocyanide ligand, but attempts to prepare the carbonyl analogues, [MOCl2(CO)(PMe3)2], have proved unsuccessful. The new compounds have been characterized by analytical and spectroscopic methods (IR, 1H, 13C and 13P NMR spectroscopy).  相似文献   

11.
Treatment of [LOEtTi(OTf)3] (, OTf = triflate) with S-binapO2 (binap = 2,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl) afforded the terminal hydroxo complex [LOEtTi(S-binapO2)(OH)][OTf]2 (1). Treatment of [LOEtTi(OTf)3] with K(tpip) (tpip = [N(Ph2PO)2]) afforded [LOEtTi(tpip)(OTf)][OTf] (2) that reacted with CsOH to give [LOEtTi(tpip)(OH)][OTf] (3). The structures of 1 and 2 have been determined.  相似文献   

12.
Thermal decomposition of Pu(C2O4)2·6H2O, Pu2(C2O4)3·10H2O and Np(C2O4)2 ·6H2O has been studied by using combination of gas chromatography, infrared spectroscopy, spectrophotometry and complex thermal analysis. We also investigated the decomposition of Pu oxalate under its -radiation. The reduction of Pu(IV) to Pu(III) has been confirmed. We found Np(V), which is formed from Np(IV), on the basis of infrared and absorption spectra of the intermediate compounds.  相似文献   

13.
Kinetics of sorption of Pu(IV) by smectite-rich clay has been studied at varying metal ion concentrations. Different concentrations were achieved using different isotopes of Pu, namely, 239Pu, 238Pu and 237Pu. 237Pu was produced by alpha induced reaction on 235U, followed by radiochemical separation of Pu from irradiated U3O8 target. The concentrations used are above and below the solubility of Pu(IV) under neutral pH conditions, thereby, indicating the mechanism of sorption reactions of Pu(IV) in typical laboratory experiments and field level observations. Kinetics of Pu(IV) at 10?13 M concentration was found to be fast whereas at higher metal concentration the rate is governed by a slow step, indicating the role of formation of Pu(IV) polymeric species at the sorbent surface.  相似文献   

14.
(103)Rhodium(III) complexes derived from seven acyclic tetradentate N(2)S(2) ligands (one diaminedithiol and six diaminedithioether ligands) have been synthesized and characterized. Structural variations in the ligand include the length of carbon backbone between the coordinating atoms (222; 232; 323; 333), the presence or absence of gem-dimethyl groups α to sulfur, and the nature of the organic moiety on the sulfurs (hydrogen, p-methoxybenzyl and methyl). For each ligand, the formation of cis and/or trans dichloro isomeric complexes was assessed. Two complexes have been further characterized by single crystal X-ray diffraction. Preparation of the (103)Rhodium(III) complexes was conducted and overall radiochemical yields, in vitro stability and log D(7.4) values were measured. From these studies, the ligand with the 232 chain length, gem-dimethyl groups and the methyl thioether (L4) emerged as a preferred ligand for formation of rhodium complexes with trans geometry and highest radiochemical yields.  相似文献   

15.
Octylphenyl acid phosphate, the commercially available mixture of monooctylphenylphosphoric acid (MOPPA) and dioctylphenylphosphoric acid (DOPPA) in xylene medium has been employed as an extractant for distribution studies on Pu(IV) in different mineral acids including phosphoric acid. It was found possible to extract Pu quantitatively from an acid mixture comprising 2.5M H3PO4, 0.75M H2SO4 and 0.5M HNO3. Quantitative stripping was observed with a mixture of 0.25M oxalic acid and 0.2M ammonium oxalate.Parts of this work have been reported at symposie (Refs1,2)  相似文献   

16.
The thiocyanate complexing of Np(IV), at μ = 2.0 and [H+] = 1.0 M, has been studied by solvent extraction method, using thenoyltrifluoroacetone (TTA) and dinonylnaphthalene-sulphanic acid (DNNS), and that of Pu(III), under similar conditions, using DNNS. Data indicate the formation of three successive complexes between Np(IV) and SCN with the overall stability constants 31.3 ± 4.9, 114.7 ± 20.7 and 340.9 ± 18.3. Pu(III) seems to form only one complex upto [SCN] ⩽ 0.4 M, with the stability constant value of 2.14 + 0.15, whereas further complexing appears to occur at higher concentrations of SCN; the β2 is estimated to be about 0.5. Spectrophotometric and solvent extraction data obtained further confirmed the thiocyanate complexing of these two ions. The thermodynamic constants associated with the complex formation of Np(IV) with thiocyanate have also been determined.  相似文献   

17.
Electrochemical and absorption spectroscopic properties of Pu(IV) and Pu(III) in nitric acid have been investigated by using cyclic voltammetry (CV) and UV–Visible spectroscopy. CV using a glassy carbon electrode suggested that the electrochemical reaction of Pu(IV) nitrate complexes were found to be a quasi-reversible reduction to Pu(III) species. The formal redox potentials (E 0) for Pu(IV)/Pu(III) couples were +0.721, +0.712, +0.706, +0.705, +0.704, 0.694, and +0.696 V (vs. Ag/AgCl) when nitric acid concentrations are 1–7 M nitric acid solutions, respectively. These results indicate that the reduction product of Pu(IV) is only Pu(III). Further details for reaction mechanism of Pu(IV) were discussed on the basis of digital simulation of the experimental cyclic voltammograms. The absorption spectroscopic properties of Pu(III) and Pu(IV) in nitric acid solutions were investigated with UV–Visible spectrophotometry. As a result, it was founds that the intensities of the characteristic absorption peaks of Pu(III) and Pu(IV) tend to decrease with increasing nitric acid concentration for 1–8 M, and the peaks positions shifted longer or shorter wavelengths depending on the complex-forming abilities of Pu(III) and Pu(IV) with an increase in the nitric acid concentration.  相似文献   

18.
Substitution of water in the ruthenium(IV) aquacomplex by chloride and bromide in media of various compositions is studied spectrophotometrically. Changing the supporting electrolyte in the series Na-Li-H shifts the equilibrium for formation of the chloro- and bromocomplexes toward species more coordinatively saturated with halide.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2486–2492, November, 1989.  相似文献   

19.
The structural characteristics and energies of PuCl n (3 − n)+ and PuCl n (4 − n)+ complexes (n = 2–8) have been studied by the density functional theory (DFT) method in the SVWN5 local functional approximation.  相似文献   

20.
Heddur RB  Khopkar SM 《Talanta》1988,35(7):594-596
The reversed-phase extraction chromatographic separation of selenium(IV) and tellurium(IV) from several elements with trioctylphosphine oxide as extractant is reported. Selenium was extracted from 6M hydrochloric acid containing 7M lithium chloride was stripped with 4M hydrochloric acid, and tellurium was extracted from either the same medium as selenium or from 4M hydrochloric acid, and stripped with 1-2M hydrochloric acid. Selenium and tellurium can be separated from multicomponent mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号