首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tao L  Sun K  Miller DJ  Khan MA  Zondlo MA 《Optics letters》2012,37(8):1358-1360
We report the characteristics of current induced frequency modulation (FM) for two continuous-wave quantum cascade lasers (QCLs) at 9.06 μm. Both the frequency tuning rate and the phase shift between intensity modulation and FM are measured at different modulation frequencies from 10 Hz to 200 kHz. The frequency tuning rate of the QCLs depends on both the modulation frequency and amplitude. The tested QCL has been used to detect ambient water vapor with wavelength modulation spectroscopy for validation with a numerical model.  相似文献   

2.
汪明  谷永先  季海铭  杨涛  王占国 《中国物理 B》2011,20(7):77301-077301
We investigate the band structure of a compressively strained In(Ga)As/In 0.53 Ga 0.47 As quantum well (QW) on an InP substrate using the eight-band k · p theory.Aiming at the emission wavelength around 2.33 μm,we discuss the influences of temperature,strain and well width on the band structure and on the emission wavelength of the QW.The wavelength increases with the increase of temperature,strain and well width.Furthermore,we design an InAs /In 0.53 Ga 0.47 As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.  相似文献   

3.
顾溢  王凯  李耀耀  李成  张永刚 《中国物理 B》2010,19(7):77304-077304
The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/In 0.53 Ga 0.47 As digital alloy triangular well layers and tensile In 0.53 Ga 0.47 As/InAlGaAs digital alloy barrier layers.The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality.Photoluminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers.A significantly improved PL signal of around 2.1 μm at 300 K and an EL signal of around 1.95 μm at 100 K have been obtained.  相似文献   

4.
A new tensile strained InGaAs/InGaAlAs quantum well structure in the 1.3 μm wavelength region is proposed for high temperature characteristics via quantum well band structure and optical gain calculations. To obtain such features, a tensile-strained InGaAs/InGaAlAs quantum well structure, which emits light dominated by TM polarization, is considered. This proposed structure has very high temperature characteristics (T 0 > 130 K) due to its high density of state at the first transition edge. This results clearly show the potential of tensile strained quantum well structure usage for the high temperature operation of quantum well semiconductor lasers.  相似文献   

5.
Linewidth enhancement factor (LEF) of InAs/InP quantum dot (QD) multi-wavelength lasers (MWLs) emitting around 1.5 μm is investigated both above and below the threshold. Above the threshold, LEFs at three different wavelengths around the gain peak of 1.53 μm by the injection locking technique are obtained to be 1.63, 1.37 and 1.59. Then by Hakki–Paoli method LEF is found to decrease with increased current and shows a value of less than 1 below the threshold. These small LEF values have clearly indicated that our developed InAs/InP QDs are perfect and promising gain materials for QD MWLs, QD mode-locked lasers (QD MLLs) and QD distributed-feedback (QD DFB) lasers around 1.5 μm.  相似文献   

6.
The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/Ino.53Ga0.47As digital alloy triangular well layers and tensile Ino.53Ga0.47As/InAiGaAs digital alloy barrier layers. The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality. Photo- luminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers. A significantly improved PL signal of around 2.1μm at 300 K and an EL signal of around 1.95μm at 100 K have been obtained.  相似文献   

7.
Bae  S.-J.  Park  S.-H.  Lee  Y.-T. 《Optical and Quantum Electronics》2003,35(10):967-977
A novel polarization independent InGaAs/InGaAlAs quantum well (QW) structure in the 1.55 m wavelength region is proposed. A coupled QW structure with tensile strain in the QW and/or barrier region is considered for the reduction of the optical gain difference between TE and TM modes in the wide spectral range. A triple-coupled QW structure with alternative strain (tensile/compressive/tensile) is found to be the most effective in reducing the polarization gain difference. This is because the transition strength difference of each polarization is reduced by energy states coupling. The optimized triple-coupled QW structure shows polarization independence for wide carrier density and wavelength range, which is suitable for polarization independent operation of QW based semiconductor devices, such as semiconductor optical amplifiers.  相似文献   

8.
We fabricate a Ga As-based In Ga As/In Ga As P multiple quantum wells(MQWs) laser at 1.55 μm. Using two-step growth method and thermal cyclic annealing, a thin low-temperature In P layer and a thick In P buffer layer are grown on Ga As substrates by low-pressure metal organic chemical vapor deposition technology. Then, highquality MQWs laser structures are grown on the In P buffer layer. Under quasi-continuous wave(QCW) condition, a threshold current of 476 m A and slope efficiency of 0.15 m W/m A are achieved for a broad area device with 50 μm wide strip and 500 μm long cavity at room-temperature. The peak wavelength of emission spectrum is1549.5 nm at 700 m A. The device is operating for more than 2000 h at room-temperature and 600 mA.  相似文献   

9.
10.
Hou L  Haji M  Akbar J  Qiu B  Bryce AC 《Optics letters》2011,36(6):966-968
We demonstrate a novel (to the best of our knowledge) 40?GHz passively mode-locked AlGaInAs/InP 1.55?μm laser with a low divergence angle (12.7°×26.3°), timing jitter of 1.2?ps (10?kHz-100?MHz), and a radio frequency linewidth of 25?kHz.  相似文献   

11.
Systematic investigation of InAs quantum dot(QD) growth using molecular beam epitaxy has been carried out, focusing mainly on the InAs growth rate and its effects on the quality of the InAs/GaAs quantum dots.By optimizing the growth rate, high quality InAs/GaAs quantum dots have been achieved.The areal quantum dot density is 5.9× 10~(10) cm~(-2), almost double the conventional density(3.0 × 1010 cm~(-2)).Meanwhile, the linewidth is reduced to 29 meV at room temperature without changing the areal dot density.These improved QDs are of great significance for fabricating high performance quantum dot lasers on various substrates.  相似文献   

12.
All-optical, normal-to-surface modulation in InGaAsP epitaxial layers, lattice matched to InP, is investigated. Close to the gap wavelength of 1.3 m a transmission increase under optical excitation is observed. A modulation depth of 34% is achieved for 0.8 mW pump power at 790 nm wavelength. The modulation frequency is limited by excess carrier lifetime. A 3 dB frequency of 80 MHz is achieved with a 10 dB decrease at 400 MHz. A lateral electric field enlarges the bandwidth but decreases the modulation depth. For weak excitation the experiments are well described in terms of direct electronic transitions between parabolic bands or in terms of simple band filling. The devices are well suited for parallel optical data processing.  相似文献   

13.
We report 25 Gb/s high-speed directly modulated ground-state operation of 1.3 μm In As/Ga As quantum dot(QD) lasers grown by molecular beam epitaxy. The active region of the lasers consists of eight layers of p-doped In As QDs with high uniformity and density. Ridge-waveguide lasers with a 3-μm-wide and 300-μm-long cavity show a low threshold current of 14.4 m A at 20°C and high temperature stability with a high characteristic temperature of 1208 K between 20°C and 70°C. Dynamic response measurements demonstrate that the laser has a 3 d B bandwidth of 7.7 GHz at 20°C and clearly opened eye diagrams even at high temperatures up to 75°C under a 25 Gb/s direct modulation rate.  相似文献   

14.
InGaAsP/InGaAsP multiple-quantum-well (MQW) double-channel planar-buried heterostructure (DCPBH) lasers emitting at λ∼ 1.57 μm were fabricated by optimizing the epitaxial growth with material characterization. At 25 °C (85 °C), a 1.8-μm-wide and 300-μm-long antireflectivity/high reflectivity coated laser exhibits a threshold current of 8 mA (23 mA) and a slope efficiency of 0.34 mW/mA (0.24 mW/mA) in continuous-wave mode (cw) as a result of the optimized thickness of the p-InP filling layer in the PBH structure with p-n-p-n current blocking layers. The maximum cw output power was approximately 20 mW at 25 °C, which was reduced to 17 mW at 85 °C. The peak wavelength varied from 1572 nm at 25 °C to 1602 nm at 100 °C for a fixed output power of 5 mW, indicating a temperature coefficient of ∼ 0.4 nm/K. The resonance frequency in the small-signal modulation response of devices depends on the etching depth of the U-shaped double channel; it increases from 0.4 GHz without channel etching to 4.3 GHz with 7-μm-thick etching. The full-width at half maximum values in the horizontal and vertical far-field patterns were approximately 24.5° (25.2°) and 29.4° (30.1°), respectively, at 25 °C (85 °C). PACS 42.55.Px; 73.61.Ey; 81.05.Ea  相似文献   

15.
We have realized a reflection-type electro-optic InGaAs/GaAs multiple quantum well (MQW) modulator using an organic–inorganic distributed Bragg reflector (DBR). The MQW active layer is embedded in the intrinsic region of a p-i-n diode. The DBR consists of few pairs of CFx/TiOxlayers, fabricated by room-temperature ion beam sputtering on the rear side of the device. The reflectivity of the mirror approaches 98% in the infrared spectral region and is centered at then = 1 exciton resonance of the MQW. ON–OFF driving reverse voltages of 0.5 and 1.8 V are measured at room temperature. In this range the static response of the device is linear so that it can be used for analog electro-optic modulation.  相似文献   

16.
The optically pumped FIR laser lines at 119 m from CH3OH and at 127 m from13CD3OH are known to be the most powerful in the far infrared spectral region. We report on efficiency measurements for our waveguide laser system. The effect of various parameters was investigated, resulting in the highest efficiency ever reported for the 119 m line. The Stark effect and others parameters of the 127 m were measured, and a new13CD3OH laser line at 175 m discovered, with the same pump transition. These measurements are helpful for completing the assignment already proposed for the 127 m line.  相似文献   

17.
In(Ga)As/GaAs quantum-dot (QD) lasers with emission wavelength at 1295 nm at room temperature are fabricated. The laser active region contains a threefold stack of QD layers with surface dot density of 4.56 × 1010 cm–2. The laser structure is aluminum-free with InGaP as cladding layers. Threshold current density of a narrow stripe laser of 8 m wide and 3.5 mm long is 152.5 A/cm2. The highest relaxation oscillation frequency measured at room temperature is 1.8 GHz, corresponding to a modulation bandwidth of 2.8 GHz due to the small damping factor. From the above measurement, the differential gain and gain compression factor were extracted to be 4.3 × 10–16 cm2 and 3.4 × 10 –17 cm 3, respectively. Using these parameters, the maximum modulation bandwidth f 3 dB max is estimated as 7.9 GHz.  相似文献   

18.
High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with InGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of . The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does.  相似文献   

19.
We report mode missing and modal instability of uncooled Fabry–Perot (FP) lasers for the temperature range from –45 to 85C and their effect on transmission performance. Using the time domain laser model (TDLM), mode missing has been modeled in FP lasers with structural defects in the active layer. Using this model, we have estimated eye opening penalty (EOP) due to missing modes up to 2.5 Gbps data rate. These simulation results suggest that FP lasers should have less than two missing modes for stable operation and high performance for optical data links.  相似文献   

20.
The thermal effects in InGaAs/InAlAs quantum cascade lasers (QCLs) emitting at λ∼4.6 μm under pulsed and continuous-wave (CW) modes using a three-dimensional (3D) heat dissipation model were investigated. Based on the experimentally measured results, the thermal characteristics were theoretically analyzed for various device and heatsinking structures. Also, the heat accumulation effects and dissipation processes were studied in detail under pulsed operation. High cooling efficiencies were achieved by a relatively fast heat diffusion rate from the active core region for the epilayer-down bonded single ridge waveguide buried heterostructure (BH) with a thick electroplated Au around the laser ridge. A further improvement was made by the use of InP embedding layer. In CW mode, the thermal conductance (G th) value of 445 W/(K cm2) at 298 K was obtained for the epilayer-down bonded double-channel ridge waveguide QCL with AlN submount, which indicates a reasonable consistency with the available experimental data. By optimizing the device and heatsinking structures, the G th was improved to a high value of 673 W/(K cm2) at 298 K for the epilayer-down bonded single ridge waveguide BH QCL with InP embedding layer on diamond submount in CW mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号