首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
${\text{BaCe}}_{0.7} {\text{Sn}}_{0.1} {\text{Gd}}_{0.2} {\text{O}}_{3 - \sigma } $ (BCSG) and ${\text{BaCe}}_{0.8} {\text{Gd}}_{0.2} {\text{O}}_{3 - \sigma } $ (BCG) powders were prepared by solid-state reaction method. After exposure in 5% CO2?+?5% H2O?+?90% N2 at 500 °C for 5 h, the BCSG powders were hardly affected while the BCG powders decomposed into CeO2 and BaCO3 phases. Moreover, the relative density of BCSG reaches 97%, while the BCG just displays 91% after sintering at 1,400 °C. The BCSG displays a conductivity of 0.01 S/cm at 700 °C in humid hydrogen, which is quite close to 0.012 S/cm for BCG. A fuel cell with BCSG exhibits 1.02 V for open circuit voltage, 420 mW/cm2 for peak performance and 0.23 Ω cm2 for interfacial resistance at 700 °C, respectively.  相似文献   

2.
Previous H2 permeation tests showed a degradation of H2 permeation flux with time. To understand the cause of degradation and develop a solution, the stability of $ {\text{SrCe}}_{{0.9}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ and $ {\text{SrZr}}_{{0.2}} {\text{Ce}}_{{0.7}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ samples were studied under dry and wet H2 atmospheres. Total conductivity of $ {\text{SrCe}}_{{0.9}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ increased with time in dry H2. The X-ray diffraction pattern of $ {\text{SrCe}}_{{0.9}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ after dry hydrogen atmosphere heat treatments show CeO2 peaks indicating that $ {\text{SrCe}}_{{0.9}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ decomposes under dry H2 atmospheres; scanning electron microscopy and energy dispersive X-ray spectroscopy analyses prove that decomposition proceeded along the grain boundaries. $ {\text{SrZr}}_{{0.2}} {\text{Ce}}_{{0.7}} {\text{Eu}}_{{0.1}} {\text{O}}_{{3 - \delta }} $ was investigated and demonstrated greater stability under dry hydrogen atmospheres. However, Zr substitution results in a tradeoff with electrical properties.  相似文献   

3.
The effect of metal-to-oxide grain boundary layer in $ {\text{Ni}} - {\text{BaCe}}_{{0.8}} {\text{Y}}_{{0.2}} {\text{O}}_{{3 - \delta }} $ (BCY) cermet membrane on hydrogen permeation was studied by applying the different size of oxide grain on Ni-BCY membranes. Two types of cermet membranes having different grain size of oxide were prepared by using different starting particle size of oxide powder. The hydrogen flux of coarse-oxide-grain membrane showed higher flux than that of small-oxide-grain membrane. It was understood that the negative potential at metal-to-oxide grain boundary, reference to the bulk oxide ( $ \phi _{0} < \phi _{\infty } = 0 $ ), was developed, and the accumulation of the effectively positively charged protons may occur at the grain boundary layer (space charge layer), which may result in providing highly conductive proton path by shifting the charge neutrality condition from $ {\left[ {OH^{ \bullet }_{O} } \right]} = {\left[ {Y^{/}_{{Ce}} } \right]} $ to $ {\left[ {OH^{ \bullet }_{O} } \right]} = n $ .  相似文献   

4.
We calculate multireference configuration-interaction wavefunctions and the potential-energy curves for the $ {B^3}\Sigma_u^{-} $ and $ {X^3}\Sigma_g^{-} $ states of the collision-free S2 molecule and the T-shape collision complex S2?CHe using cc-pVQZ basis sets. We obtain the transition dipole moments of the $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \to {X^3}\Sigma_g^{-} } \right) $ and the Franck?CCondon factors between the vibrational levels of this two states. We evaluate the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ levels of the collision complex and the collision-free molecule and compare them with the experiments. The collision provides little change in the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ according to the previous calculations. We obtain excellent agreement between the theoretical results and the experiments. The data calculated are very useful in the study of the microwave-driven high-pressure sulfur lamp and an S2 laser pumped by a transverse fast discharge.  相似文献   

5.
Femtosecond (fs) laser pulses at variable delay times allowed us to track the fast non-radiative transitions between the manifold of highly excited $\mathrm{M}_{\mathrm{Na}}^{**}$ states to the lower lying fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in CaF2. Two distinct $\mathrm{M}_{\mathrm{Na}}^{**}$ states of the manifold at 3.16?eV ( $\mathrm{M}_{\mathrm{Na}2}^{**}$ ) and 4.73?eV ( $\mathrm{M}_{\mathrm{Na}3}^{**}$ ) were populated using the second (SH) and third harmonics (TH) of fs laser light at 785?nm. The population kinetics of the fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in the 2?eV excitation energy range was revealed by depleting its fluorescence centered at 740?nm using fundamental near infrared (NIR) fs laser pulses. The related time constants for $\mathrm{M}_{\mathrm{Na}2,3}^{**}{\sim}{>} \mathrm{M}_{\mathrm{Na}}^{*}$ relaxation amounted to 1.0±0.14?ps and 3.0±0.3?ps upon SH and TH excitation, respectively.  相似文献   

6.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

7.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with electrolytes containing $\text{ I }^{-}/\text{ I }_{3}^{-}$ redox couple using 80 % hydrolyzed polyvinyl alcohol (PVA) doped with potassium iodide (KI) and a mixture of potassium iodide and tetrapropyl ammonium iodide ( $\text{ Pr }_{4}\text{ NI }$ ) salts. The quasi solid state gel polymer electrolytes were prepared using 1:1 ethylene carbonate (EC):propylene carbonate (PC) mixture. The solar cells have the structure of ITO/ $\text{ TiO }_{2}$ /N3-Dye/electrolyte/Pt/ITO. The conductivity of the electrolytes has been calculated from the bulk resistance value determined using the electrochemical impedance spectroscopy. The performance of the DSSCs has been studied by varying the concentration of the doping salts in the electrolyte and incident light intensity. The DSSC fabricated with the KI salt electrolyte containing 9.9 wt% PVA, 39.6 wt% EC, 39.6 wt% PC, 10.9 wt% KI $(+\text{ I }_{2})$ exhibited the best power conversion efficiency of 1.97 %. However, the DSSC with a double-salt electrolyte containing 9.9 wt% PVA: 39.6 wt% EC: 39.6 wt% PC: (6.5 wt% KI: 4.4 wt% $\text{ Pr }_{4}\text{ NI }$ ) ( $+\text{ I }_{2}$ ) exhibited a higher efficiency of 3.27% under $100 \text{ mW/cm }^{2}$ light intensity. The efficiency of this cell increased to 4.59 % under dimmer light of intensity of $54 \text{ mW/cm }^{2}$ .  相似文献   

8.
In this work we study the semileptonic decay of ${\bar{B}}_{s}^{0}\to \phi {l}^{+}{l}^{-}$ (l=e, μ, τ) with the QCD sum rule method. We calculate the ${\bar{B}}_{s}^{0}\to \phi $ translation form factors relevant to this semileptonic decay, then the branching ratios of ${\bar{B}}_{s}^{0}\to \phi {l}^{+}{l}^{-}$ (l=e, μ, τ) decays are calculated with the form factors obtained here. Our result for the branching ratio of ${\bar{B}}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}$ agree very well with the recent experimental data. For the unmeasured decay modes such as ${\bar{B}}_{s}^{0}\to \phi {e}^{+}{e}^{-}$ and ${\bar{B}}_{s}^{0}\to \phi {\tau }^{+}{\tau }^{-}$, we give theoretical predictions.  相似文献   

9.
In this paper, we present detailed studies of the EPR spectra of Cu2+ ions in single crystals of ZnSeO4·6H2O. We describe the spectrum with a rhombic spin Hamiltonian with the following parameters: gz=2.427; gy=2.095; gx=2.097; A z 65 =138.4·10?4 cm?1; A x 65 =22.3·10?4 cm?1. We studied spin-lattice relaxation in the temperature range 4–300 K at the frequency v≈9.3 GHz. The measured spin-lattice relaxation rate for the orientation H∥L4 is described well at T<5 K by a linear dependence, while at T>5 K it is described by the sum of three exponentials: $$T_1^{ - 1} = 0.27T + 3.3 \cdot 10^{\text{s}} \exp \left( {\frac{{ - 69.5}}{T}} \right) + 2.6 \cdot 10^7 \exp \left( {\frac{{ - 140}}{T}} \right) + 1.36 \cdot 10^{10} \exp \left( {\frac{{ - 735.6}}{T}} \right){\text{ sec}}^{{\text{ - 1}}} $$ .We discuss possible reasons for the exponential dependence of T 1 ?1 for the Raman process.  相似文献   

10.
A three-body calculation for the \({^4_{\Lambda} \rm{He}}\) and \({^6_{\Lambda}{\rm H}}\) hypernuclei has been undertaken. The respective cores are \({^4_{\Lambda}{\rm H}}\) . The interactions in the \({^6_{\Lambda}{\rm He}}\) system, modeled as \({^4_{\Lambda} {\rm H+p+n}}\) , are reasonably well known. For example, the p n interaction is well determined by the p n scattering data, the \({^4_{\Lambda}{\rm H}}\) p interaction can be fitted to the \({^5_{\Lambda}{\rm He}}\) binding energy. The \({^4_{\Lambda}{\rm He}}\) n interaction can be fitted to α–n scattering data. For the 4He–n system the s-wave can be modeled alternatively as a repulsive potential or as an attractive potential with a forbidden bound state. We explore these alternatives in 6He, because the interaction comes into play in modeling \({^6_{\Lambda}{\rm He}}\) as well as in our \({^4_{\Lambda}{\rm H}}\) + n + n model of \({^6_{\Lambda}{\rm H}}\) , where the valence neutrons are Pauli blocked from the s-shell of the core nucleus.  相似文献   

11.
A representation of a specialization of a q-deformed class one lattice ${\mathfrak{gl}_{\ell+1}}$ -Whittaker function in terms of cohomology groups of line bundles on the space ${\mathcal{QM}_d(\mathbb{P}^{\ell})}$ of quasi-maps ${\mathbb{P}^1 \to \mathbb{P}^{\ell}}$ of degree d is proposed. For ? = 1, this provides an interpretation of the non-specialized q-deformed ${\mathfrak{gl}_{2}}$ -Whittaker function in terms of ${\mathcal{QM}_d(\mathbb{P}^1)}$ . In particular the (q-version of the) Mellin-Barnes representation of the ${\mathfrak{gl}_2}$ -Whittaker function is realized as a semi-infinite period map. The explicit form of the period map manifests an important role of q-version of Γ-function as a topological genus in semi-infinite geometry. A relation with the Givental-Lee universal solution (J-function) of q-deformed ${\mathfrak{gl}_2}$ -Toda chain is also discussed.  相似文献   

12.
13.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

14.
We propose a new explicit form of q-deformed Whittaker functions solving q-deformed ${\mathfrak{gl}_{\ell+1}}A representation of a specialization of a q-deformed class one lattice \mathfrakgll+1{\mathfrak{gl}_{\ell+1}}-Whittaker function in terms of cohomology groups of line bundles on the space QMd(\mathbbPl){\mathcal{QM}_d(\mathbb{P}^{\ell})} of quasi-maps \mathbbP1 ? \mathbbPl{\mathbb{P}^1 \to \mathbb{P}^{\ell}} of degree d is proposed. For  = 1, this provides an interpretation of the non-specialized q-deformed \mathfrakgl2{\mathfrak{gl}_{2}}-Whittaker function in terms of QMd(\mathbbP1){\mathcal{QM}_d(\mathbb{P}^1)}. In particular the (q-version of the) Mellin-Barnes representation of the \mathfrakgl2{\mathfrak{gl}_2}-Whittaker function is realized as a semi-infinite period map. The explicit form of the period map manifests an important role of q-version of Γ-function as a topological genus in semi-infinite geometry. A relation with the Givental-Lee universal solution (J-function) of q-deformed \mathfrakgl2{\mathfrak{gl}_2}-Toda chain is also discussed.  相似文献   

15.
We compute the $\mathcal{R}$ -matrix which intertwines two dimensional evaluation representations with Drinfeld comultiplication for ${\text{U}}_q \left( {\widehat{{\text{sl}}}_{\text{2}} } \right)$ . This $\mathcal{R}$ -matrix contains terms proportional to the δ-function. We construct the algebra $A\left( \mathcal{R} \right)$ generated by the elements of the matrices L±(z) with relations determined by $\mathcal{R}$ . In the category of highest-weight representations, there is a Hopf algebra isomorphism between $A\left( \mathcal{R} \right)$ and an extension $\overline {\text{U}} _q \left( {\widehat{{\text{sl}}}_{\text{2}} } \right)$ of Drinfeld's algebra.  相似文献   

16.
We study the $\overline{\nu}_{e}-e$ scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound $h_{ee}/M_{H^{\pm}}\lesssim2.8\times10^{-3}~\mbox{GeV}^{-1}$ in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16 % at E≤1014 eV and maximum at $s\approx M_{H^{\pm}}^{2}$ and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.  相似文献   

17.
The two ? reactions at rest ? pΛ 0 n and ? pΛ 0 n have been studied in order to determine the capture ratio $$r_c = \frac{{\sum ^ - p \to \sum ^0 n}}{{(\sum ^ - p \to \sum ^0 n) + (\sum ^ - p \to \Lambda ^0 n)}}$$ , theΛ 0-lifetime and the ?-Λ 0 mass difference. The following results were obtained: $$\begin{gathered} rc = 0.474 \pm 0.016 \hfill \\ \tau _{\Lambda ^0 } = (2.47 \pm 0.08) \times 10^{ - 10} \sec \hfill \\ M_{\sum ^ - } - M_{\sum ^0 } = 81.64 \pm 0.09{{MeV} \mathord{\left/ {\vphantom {{MeV} {c^2 }}} \right. \kern-\nulldelimiterspace} {c^2 }} \hfill \\ \end{gathered} $$ The ?-mass was determined from the range of the stopping ?-hyperons,M ∑} =1197.19±0.32 MeV/c 2.  相似文献   

18.
The process p $ \bar{{p}}$ $ \rightarrow$ $ \Lambda_{c}^{+}$ $ \bar{{\Lambda}}_{c}^{-}$ is investigated within the handbag approach. It is shown to lowest order of perturbative QCD that, under the assumption of restricted parton virtualities and transverse momenta, the dominant dynamical mechanism, characterized by the partonic subprocess u $ \bar{{u}}$ $ \rightarrow$ c $ \bar{{c}}$ , factorizes in the sense that only the subprocess contains highly virtual partons, namely a gluon, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling the latter functions by overlaps of light-cone wave functions for the involved baryons we are able to predict cross-sections and spin correlation parameters for the process of interest.  相似文献   

19.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

20.
Consider the focussing cubic nonlinear Schrödinger equation in \({\mathbb{R}}^3\) :
$i\psi_t+\Delta\psi = -|\psi|^2 \psi. \quad (0.1) $
It admits special solutions of the form e itα ?, where \(\phi \in {\mathcal{S}}({\mathbb{R}}^3)\) is a positive (? > 0) solution of
$-\Delta \phi + \alpha\phi = \phi^3. \quad (0.2)$
The space of all such solutions, together with those obtained from them by rescaling and applying phase and Galilean coordinate changes, called standing waves, is the 8-dimensional manifold that consists of functions of the form \(e^{i(v \cdot + \Gamma)} \phi(\cdot - y, \alpha)\) . We prove that any solution starting sufficiently close to a standing wave in the \(\Sigma = W^{1, 2}({\mathbb{R}}^3) \cap |x|^{-1}L^2({\mathbb{R}}^3)\) norm and situated on a certain codimension-one local Lipschitz manifold exists globally in time and converges to a point on the manifold of standing waves. Furthermore, we show that \({\mathcal{N}}\) is invariant under the Hamiltonian flow, locally in time, and is a centre-stable manifold in the sense of Bates, Jones [BatJon]. The proof is based on the modulation method introduced by Soffer and Weinstein for the L 2-subcritical case and adapted by Schlag to the L 2-supercritical case. An important part of the proof is the Keel-Tao endpoint Strichartz estimate in \({\mathbb{R}}^3\) for the nonselfadjoint Schrödinger operator obtained by linearizing (0.1) around a standing wave solution. All results in this paper depend on the standard spectral assumption that the Hamiltonian
$\mathcal H = \left ( \begin{array}{cc}\Delta + 2\phi(\cdot, \alpha)^2 - \alpha &;\quad \phi(\cdot, \alpha)^2 \\ -\phi(\cdot, \alpha)^2 &;\quad -\Delta - 2 \phi(\cdot, \alpha)^2 + \alpha \end{array}\right ) \quad (0.3)$
has no embedded eigenvalues in the interior of its essential spectrum \((-\infty, -\alpha) \cup (\alpha, \infty)\) .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号