首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A new technique is proposed to enhance the heat transfer from a discretely heated pipe to a developing laminar fluid flow. Unlike the common heating situation where the fluid is continuously heated along the pipe wall with uniform heat flux, the proposed technique consists in heating the fluid with stepwise distributed heat flux, namely by placing insulated segments between the heated segments. Applying this technique, the effective length of the thermal entrance region is enlarged and as a result, the average heat transfer is invigorated. In order to maximize the heating performance, an optimal placement of the insulated segments between the heated segments is calculated according to constructal design. This serves to describe the optimal stepwise distribution of the heat flux. Owing that the total heat load is considered fixed, the maximization of the heating performance translates into the minimization of the peak temperature (‘hot spot’) of the pipe wall. The analytical results demonstrate that the optimal location of the insulated segments along with the reduction of the peak temperature strongly depend on the Graetz number. It is also shown that for intermediate values of the Graetz number, the peak temperatures are remarkably reduced in response to the optimal placement of the insulated/heated segments.  相似文献   

2.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

3.
This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a non-linear regression method. Correlation coefficients were determined from the condition that the sum of squared fluid temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The outlet temperature of the fluid leaving the heat exchanger was calculated using the mathematical model describing the heat transfer in the heat exchanger. Since the conditions at the liquid-side and those at the air-side are identified simultaneously, the derived correlations are valid in a wide range of flow rate changes of the air and liquid. This is especially important for partial loads of the exchanger, when the heat transfer rate is lower than the nominal load. The correlation for the average heat transfer coefficient on the air-side based on the experimental data was compared with the correlation obtained from numerical simulation of 3D fluid and heat flow, performed by means of the commercially available CFD code. The numerical predictions are in good agreement with the experimental data.  相似文献   

4.
Flow through pipes with heat transfer finds wide applications in industry. The thermal stresses, which develop in the pipe limit the heat transfer rate in pipe flow. In the present study, a turbulent flow in thick pipe with external heating is considered. The flow and temperature fields in a pipe and in the fluid are predicted using a numerical scheme; which employs a control volume approach. A k- model is introduced to account for the turbulence. The thermal stresses developed in the pipe due to heat transfer are predicted. The simulations are repeated for different pipe materials and fluids. It is found that the temperature gradient in the pipe changes rapidly in the vicinity of the solid-fluid interface. This change is not affected considerably by the Reynolds number. The effective stress developed at mid-plane of the pipe is independent of the Reynolds number; however, the pipe material affects the effective stress considerably.  相似文献   

5.
Temperature distribution and transfer of heat in a vertical, immiscible, liquid jet in direct contact with a liquid matrix are analyzed. A theoretical model for plug and parabolic flow is adopted from the literature, the treatment of a special V-shaped velocity distribution expected in the experiment and suitable for reactor application is calculated. Two common surface conditions, i.e. constant heat flux or constant temperature are considered. An experiment was performed in which a high Prandtl number fluid (oil) formed the jet and a low Prandtl number fluid (water) formed the matrix. The experimental results fall within theoretical results obtained for a V-type velocity distribution and plug flow. It was determined that the heat transfer characteristics of a direct contact jet flow in most cases have definite advantages over those of flow in a pipe beyond the obvious advantage of removal of the pipe wall's thermal resistance. These advantages result from the more flat velocity distribution encountered in jet flow as compared to a corresponding Laminar pipe flow. The likeliness of having a particular flow shape is discussed. Advantages of a central wire, leading to the V-type flow, are the enhancement of heat transfer and the stabilisation of the jet for any desired length. The jet flow is laminar.  相似文献   

6.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

7.
This paper presents an experimental–numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined based on experimental data using a non-linear regression method. Correlation coefficients were determined from the condition that the weighted sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg–Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using an analytical model of the heat exchanger.  相似文献   

8.
Artificially roughness is one of the well known methods of enhancing heat transfer from the heat transfer surface in the form of repeated ribs, grooves or combination of ribs and groove (compound turbulators). The artificial roughness produced on the heat transferring surface is used in cooling of gas turbine blades, nuclear reactor, solar air heating systems etc. Solar air heaters have wide applications in low to moderate temperature range, namely, drying of foods, agricultural crops, seasoning of wood and space heating etc. Solar air heaters have low value of convective heat transfer coefficient between the working fluid (air) and the heat transferring surface, due to the formation of thin laminar viscous sub-layer on its surface. The heat transfer from the surface can be increased by breaking this laminar viscous sub layer. Hence, in the present work compound turbulators in the form of integral wedge shaped ribs with grooves are used on the heat transfer surface, to study its effect on the heat transfer coefficient (Nusselt number) and friction factor in the range of Reynolds number 3,000–18,000. The roughness produced on the absorber plate forms the wetted side of upper broad wall of the rectangular duct of solar air heater. The relative groove position (g/p) was varied from 0.4 to 0.8 and the wedge angle (Φ) was varied from 10° to 25°, relative roughness pitch (p/e) and relative roughness height (e/D) was maintained as 8.0 and 0.033 respectively. The aspect ratio of the rectangular duct was maintained as 8. The Nusselt number and friction factor of the artificially roughened ducts were determined experimentally and the corresponding values were compared with that of smooth surface duct. It is observed that wedge-groove roughened surface shows more enhancement in heat transfer compared to only rib roughened surface arrangement. The investigation revealed that Nusselt number increases 1.5–3 times, while the friction factor increases two to three folds that of the smooth surface duct in the range of operating parameters. It is also observed that in rib–groove roughness arrangement with relative groove position of 0.65 shows the maximum enhancement in the heat transfer compared to the other rib-groove roughness arrangements. Statistical correlations for the Nusselt number and friction factor have been developed by the regression method in terms of the operating and roughness parameters. A program was also developed in MATLAB for the calculation of thermal efficiency and thermal effectiveness. It was observed that the thermal efficiency is more for wedge angle of 15° and relative groove position of 0.65 and its value ranges from 42 to 73 %. The uncertainties in the measurements due to various instruments for the Reynolds number, Nusselt number, and friction factor have been estimated as ±3.8, ±4.54 and ±7.6 % respectively in the range of investigation made.  相似文献   

9.
Influence of the streamwise pitch on local heat transfer distribution due to a rectangular in-line array of circular air jets of length-to-diameter ratio (l/d) of 1.0 is studied experimentally. The flow, after the impingement, is constrained to exit in one direction. Mean jet Reynolds number is varied from 3000 to 10000 and jet-to-plate spacing from d to 3d. Streamwise jet-to-jet distances of 3d, 4d and 5d and a constant spanwise pitch of 4d are considered. A flat target surface is made of thin stainless steel metal foil. The local temperature distribution on a target plate is measured using thermal infrared camera. The jet exit pressures are measured to estimate the cross-flow velocities and individual jet velocities. The streamwise distribution of the jet-flow and the cross-flow is least influenced by the streamwise pitch variation for the range of parameters investigated. Heat transfer characteristics are explained partially on the basis of flow distribution. The cooling performance, based on strip averaged Nusselt number per unit mass flow rate of coolant per unit area of cooled surface, deteriorates for lower streamwise pitch and higher jet-to-plate distance.  相似文献   

10.
In the present study, fully developed laminar flow and heat transfer in a helically coiled tube with uniform wall temperature have been investigated analytically. Expressions involving relevant variables for entropy generation rate contributed to heat transfer and friction loss, and total entropy generation rate have been derived. The effect of various flow and coil parameters like Reynolds number, curvature ratio, coil pitch, etc. on the entropy generation rate has been studied for two fluids- air and water. The results of the present study have been compared to the corresponding entropy generation values of straight pipe. Investigating the results, some optimum values for Reynolds number have been proposed and compared with the optimum Reynolds numbers of laminar flow inside a coiled tube subjected to constant heat flux boundary condition.  相似文献   

11.
The effect of time-dependent pressure pulsations on heat transfer in a pipe flow with constant temperature boundaries is analysed numerically when the viscosity of the pulsating fluid is an inverse linear function of the temperature. The coupled differential equations are solved using Crank-Nicholson semi-implicit finite difference formulation with some modifications.The results indicate local variations in heat transfer due to pulsations. They are useful in the design of heat exchangers working under pulsating flow conditions. The analytical results are presented for both heating and cooling. The conditions under which pulsating flows can augment the heat transfer are discussed. The results are applicable for heat exchangers with fluids of high Prandtl number.  相似文献   

12.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

13.
 The condensation process of steam inside horizontal tubes during natural circulation gains in importance regarding the reactor safety research for existing and future nuclear power plants. Experimental investigations due to the condensation process were realized with the rig HORUS to study the behaviour of water-steam-gas mixtures in horizontal tubes. The paper includes statements regarding the flow and heat transfer conditions inside the tube and the temperature distribution inside the small tube wall. The experiments showed a blockade of the heat transfer area with Nitrogen which is connected with an increasing primary pressure followed by a compression of the Nitrogen and a reentry of steam into the tube. The experiments serve for the creation of an experimental data base. A model development for calculation of the heat transfer is described. The model was implemented in the German thermal-hydraulic code ATHLET. The comparison of calculated data and the measured parameters of HORUS rig show the code improvement for the simulation of noncondensing gases. Received on 17 January 2000  相似文献   

14.
Analysis is made for the transient heat transfer phenomena in the thermal entrance region of laminar pipe flows. The transient results from both the change in flow field, a step change in pressure gradient from zero to a fixed value, and the change in thermal field, a step change in the inlet temperature. An exponential scheme has been employed to solve the energy equation with the presence of axial heat conduction in the fluid. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of conventional Nusselt number, modified Nusselt number, bulk fluid temperature and pipe wall temperature are presented for water and air over a wide range of outside heat transfer coefficients. It is observed that the outside heat transfer coefficient has a significant influences on the transient heat transfer processes. The results can be comprehensively interpreted by the interactions among the axial convection, axial diffusion, and radial diffusion.  相似文献   

15.
This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 °C, respectively.

From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust–air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data.  相似文献   


16.
This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60–24) and the ratio of length to gap clearance (800–320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel’s integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m2, the maximum wall temperature was lower than 350 °C. All this work is valuable for the plate type reactor’s design and safety analysis.  相似文献   

17.
Direct numerical simulations of heat transfer in a fully-developed turbulent pipe flow with circumferentially-varying thermal boundary conditions are reported. Three cases have been considered for friction Reynolds number in the range 180–360 and Prandtl number in the range 0.7–4. The temperature statistics under these heating conditions are characterized. Eddy diffusivities and turbulent Prandtl numbers for radial and circumferential directions are evaluated and compared to the values predicted by simple models. It is found that the usual assumptions made in these models provide reasonable predictions far from the wall and that corrections to the models are needed near the wall.  相似文献   

18.
This paper describes the results of an experimental study of heat transfer in the case of the flow of a helium–xenon mixture with a Prandtl number approximately equal to 0.23 and the flows of pure helium and air in heated tubes of circular or triangular cross sections with a constant density of the heat flow. The region of thermal stability is studied. The law of heat transfer on the stabilized region is compared with known relationships. The approach that helps obtaining an expression for the calculation of heat transfer in heat transfer devices with circular and triangular cross sections, which operate in a mixture heating mode on the initial region, is developed.  相似文献   

19.
A fully implicit upwind finite difference numerical scheme has been proposed to investigate the characteristics of thermal entrance heat transfer in laminar pipe flows subject to a step change in ambient temperature. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of modified Nusselt number, bulk fluid temperature, and wall temperature and the transient temperature profiles at certain axial locations are presented graphically for various outside heat transfer coefficients. The effects of the outside heat transfer coefficient on the heat transport processes in the flow are examined in detail. The results can be comprehensively explained by the interaction between the upstream convective heat transfer and the diffusion heat transfer in the radial direction. Steady state is reached when the axial convection balances the radial diffusion.  相似文献   

20.
The effect of density inversion on transient natural convection heat transfer of cold water in a square cavity with partially active vertical walls is studied numerically. The governing equations are solved by control volume method with power law scheme. In the hot location the temperature is varied sinusoidally and in the cold location uniform temperature is maintained. Nine different positions of the active zones are considered. Results are discussed for various values of the amplitude, period and different Grashof numbers and presented graphically in the form of isotherms, streamlines, mid-height velocity profile and average Nusselt number. It is found that density inversion of water affects natural convection flow and heat transfer. Heat transfer rate is enhanced upto 80% when the heating location is in the middle of the hot wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号