首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two stable phases of cobalt oxide nanoparticles of controlled sizes have been synthesized using environmentally friendly inorganic precursor. Structural characterization using X-ray diffraction (XRD) shows a single-phase spinal Co3O4 structure up to annealing temperature of 800 °C and a mixed phase of Co3O4 and CoO particles for T>900 °C. Single-phase CoO nanoparticles are also obtained by annealing the particles at a temperature >900 °C and cooling in inert atmosphere. Average macro- and micro-strain were estimated using XRD data. Macrostrain was found to be the minimum for particles annealed at 600 °C, whereas microstrain was found to decrease with increasing annealing temperature up to 900 °C. A correlation between the density of localized states (DOS) in the band gap and strain is expected because the origin of both strain and DOS are defects and bond length distortions. Sub-gap absorption measurement and model calculations have been used for the determination of DOS. For cobalt oxide nanoparticle samples we find a correlation between estimated strain and density of states in the band gap.  相似文献   

2.
Abstract

Al-base composites with different amount of silica (5, 10, 15 and 20 wt.%) were developed using powder metallurgy route and compacts were sintered at 550 °C for 2 h. XRD analysis of all compositions was conducted for phases and amount of the second phase present. Morphology of the composites shows quite uniform distribution of the SiO2 particles but at higher percentage of SiO2 particles the clustering starts. Mechanical properties such as uniaxial compressive strength (UCS) and hardness were evaluated and it is seen that among all compositions, composite with 10 wt.% SiO2 has maximum UCS and hardness. Wear behavior of all composites was studied with sliding distance, applied loads, sliding velocity and composition. All composites show a linear increase in cumulative wear with distance and load. Wear rate with load increases continuously for all compositions, however, composite with 10 wt.% SiO2 revealed minimum wear rate with distance, sliding velocity and loads. Wear rate with sliding velocity increases sharply after attaining minima at 3 m/s sliding velocity. SEM analysis of wear tracks is in agreement with wear results. Al-10 wt.%SiO2 also shows minimum wear coefficient values for all loads, however, wear coefficient decreases with load for all compositions.  相似文献   

3.
We present a morphological, structural, and magnetic characterization of Co nanoparticles (mean diameter of 10.3 ± 1.8 nm) grown using a gas aggregation source and embedded in a silicon oxide matrix by sequential deposition of nanoparticles and silicon oxide. We show that the Co nanoparticles ??soft-land?? on the substrates and suffer a moderate oxidation in contact with the silicon oxide. Despite this moderate oxidation, it is found that, at room temperature, the magnetic volume of the resulting nanoparticles is below the superparamagnetic limit. The results presented in this article are compatible with the presence of an assembly of magnetically independent particles that also display a moderate exchange bias at low temperature.  相似文献   

4.
Formation of chunks of various sizes ranging between 2 and 6 mm was achieved using high-energy ball milling in Al–1at.%Pb–1at.%W alloy system at room temperature during milling itself, aiding in in situ consolidation. X-ray diffraction and transmission electron microscopy (TEM) studies indicate the formation of multi-phase structure with nanocrystalline structural features. From TEM data, an average grain size of 23 nm was obtained for Al matrix and the second-phase particles were around 5 nm. A high strain rate sensitivity (SRS) of 0.071 ± 0.004 and an activation volume of 4.71b3 were measured using nanoindentation. Modulus mapping studies were carried out using Berkovich tip in dynamic mechanical analysis mode coupled with in situ scanning probe microscopy imaging. The salient feature of this investigation is highlighting the role of different phases, their crystal structures and the resultant interfaces on the overall SRS and activation volume of a multi-phase nc material.  相似文献   

5.
Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.  相似文献   

6.
Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4?×?10?4 Scm?1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.  相似文献   

7.
Devolatilization is an important process in pulverized coal combustion because it affects the ignition, volatile combustion, and subsequent char burning and ash formation. In this study, high-speed digital in-line holography is employed to visualize and quantify the particle and volatile evolution during pulverized coal combustion. China Shanxi bituminous coal particles sieved in the range of 105–154 µm are entrained into a flat flame burner through a central tube for the study. Time-resolved observations show the volatile ejection, accumulation, and detachment in the early stage of coal combustion. Three-dimensional imaging and automatic particle extraction algorithm allow for the size and velocity statistics of the particle and stringy volatile tail. The results demonstrate the smaller particle generation and coal particle swelling in the devolatilization. It is found that the coal particles and volatiles accelerate due to the thermal buoyancy and the volatiles move faster than the coal particles. On average, smaller particles move faster than the larger ones while some can move much slower possibly because of the fragmentation.  相似文献   

8.
Electrospinning is one of the simple technical methods for the production of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years mostly in solvent solution and some in melt form. In this work, near- and supercritical CO2 were used as media for this process. At these conditions, the solubility can be tuned by controlling the temperature and pressure. Therefore, it is possible to form particles and fibers within a thermodynamic window where the biopolymer has been softened, but not dissolved. The experiments were conducted by using electrospinning under pressurized CO2 system at pressures of ~ 8.0 MPa and temperature of 313 K to produce several polymers fibers. Polyvinylpyrrolidone was used as the starting material. During the electrospinning process, the applied voltage was 10–17 kV and the distance of nozzle and collector was 8 cm. The concentration of polymer solution was 4 wt%. The morphology- and structure-produced fibers were observed by scanning electron microscopy. The results showed that temperature and pressure affected the morphology of fibers produced by electrospinning in pressurized CO2. This suggests that the thermal behavior of the polymer can be optimized by adjusting the polymer through the adjustment of pressure and temperature by using CO2 as a solvent.  相似文献   

9.
Colloidal crystal template for inverse opal hydrogel is constructed by vertical deposition method using monodispersed silica nanospheres. By adjusting the concentration of monodispersed silica nanospheres, it is found that well-structured silica template with more than 20 layers is formed when the concentration of the silica is 3.5 wt%. To enhance its strength, the prepared template is put in an oven at 500 °C for 2 h. The surface of the template is divided into many blocks by cracks formed in the process of heat treatment. The number of blocks varies with the rising time of the temperature from 25 to 500 °C. Under the same magnification, blocks formed with the rising time of 150 min can be nearly 4 times more than the blocks with a rising time of 300 min or 500 min, which means the slow rising velocity of the temperature can lead to a better colloidal crystal template with fewer blocks.  相似文献   

10.
F. Naghdi  J.Y. Kang  H.S. Kim 《哲学杂志》2015,95(31):3452-3466
The shear deformation behaviour of an extruded Mg–4Zn–0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.  相似文献   

11.
The stability of different silicon nanoparticles are investigated at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a “coat” from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen “coat” has the most stable number (close to four) of Si–Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are considered in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si60 cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen “coat” and containing 60 hydrogen atoms in the interior space has a higher stability. Such cluster has smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270-280 K.  相似文献   

12.
An investigation has been carried out to investigate the effect of nozzle geometry on hot horizontal surface rewetting during water jet impingement cooling. The test surface of 800 ± 10°C initial surface temperature is cooled by water jet of 22 ± 1°C temperature. The water flow is varied to maintain the jet Reynolds number in a range of 5,000 to 24,000. The rewetting phenomena with sharp-edged and tube-type nozzles are compared on the basis of rewetting temperature, wetting delay, rewetting velocity, and maximum surface heat flux. The rewetting performance with tube-type nozzle is better than the sharp-edged nozzle particularly for the downstream spatial locations; however, maximum surface heat flux at the stagnation region is higher with the sharp-edged nozzle.  相似文献   

13.
We propose nanosphere propulsion by using femtosecond laser-excited enhanced near field based on the theoretical calculations and experimental study. The optical intensity distribution and enhancement around a gold nanosphere on a silicon substrate was simulated by a 3D finite-difference time-domain method. The sphere velocities and propelled angles were calculated based on the optical intensity distribution. In our simulation, we calculated the optical intensity for the gold nanospheres with a diameter ranging from 100 to 600 nm. Calculation results show that the sphere velocity was fairly constant for the diameters ranging from 100 to 250 nm, while the velocity decreased for diameters larger than 250 nm. The propelled angle could be controlled up to only 4.6° by varying the incident angles of p-polarized waves. We have demonstrated the gold nanosphere propulsion in experiment. The gold nanospheres with a diameter of 200 nm were used in our experiments. The propelled gold particles have been melted by laser irradiation and deposited on the receiver substrate. The size and spatial distributions of gold particles have been investigated. The decrease in the laser spot size and the gap distance between the donor and receiver substrate would realize the reduction in the existence region of gold particles on the receiver substrate.  相似文献   

14.
Inhalation exposure to airborne nanoparticles (NPs) has been reported during manual activities using typical fume hoods. This research studied potential inhalation exposure associated with the manual handling of NPs using two new nanoparticle-handling enclosures and two biological safety cabinets, and discussed the ability to contain NPs in the hoods to reduce environmental release and exposure. Airborne concentrations of 5 nm to 20 μm diameter particles were measured while handling nanoalumina particles in various ventilated enclosures. Tests were conducted using two handling conditions and concentrations were measured using real-time particle counters, and particles were collected on transmission electron microscope grids to determine particle morphology and elemental composition. Airflow patterns were characterized visually using a laser-light sheet and fog. The average number concentration increase at breathing zone outside the enclosure was less than 1,400 particle/cm3 for each particle size at all tested conditions and the estimated overall mass concentration was about 83 μg/m3 which was less than the dosage of typical nanoparticle inhalation exposure studies. The typical front-to-back airflow was used in the studied hoods, which could potentially induce reverse turbulence in the wake region. However, containment of NPs using studied hoods was demonstrated with excellent performance. Smoke tests showed that worker’s hand motion could potentially cause nanoparticle escape. The challenge of front-to-back airflow can be partially overcome by gentle motion, low face velocity, and front exhaust to reduce nanoparticle escape.  相似文献   

15.
Abstract

The shock behaviour of NiTi shape memory alloy is investigated by using molecular dynamics simulation. The nano-pillar samples of the alloy are subjected to the impact of a piston with a velocity of 350 m/s at initial environment temperatures of 325 and 500 K. At 325 K, we observe two different pathways of the formation of BCO phase, the gradient twins, and the detwinning phenomena, strongly depending on the local stress and the deformation state. As the initial temperature increases to 500 K, the plasticity is dominated by the dislocation movements rather than the twinning at 325 K. The phase transformation and plasticity result in stress attenuation when the stress wave propagates through the nano-pillar. Furthermore, it is interesting to note that multiple stress peaks occur due to the formation of local complex atomic structures with various wave speeds, leading to the catch up and overlap of the stress waves.  相似文献   

16.
Here we present on the ability of phase-contrast magnetic resonance imaging (MRI) to accurately measure dynamic properties of cerebrospinal fluid (CSF) flow on basal level of brain. CSF characteristics were compared in a group of 55 healthy volunteers. MRI study was performed using 1.5 T system with the following parameters: repetition time TR/echo time TE = 14/8.3 ms; flip angle FA = 15°; slice thickness = 4 mm. Velocity values of CSF flow on basal level of brain obtained in the study were statistically analyzed by capturing mean values and building confidence intervals (p = 0.05). Student’s paired t-test was performed to determine significance of the differences between mean values and between caudal and cranial CSF flows. Normal values of mean velocity, mean flux and peak velocity were defined by Q-flow technique. The highest values of CSF flow characteristics were observed in the Sylvian aqueduct and pontomedullaris cistern. Mean velocity and mean flux of caudal CSF flow had significantly higher values compared to the cranial CSF flow in all investigated structures.  相似文献   

17.
Mass spectrometry is used to study the reaction mechanism of platinum (Pt) atomic layer deposition (ALD) on large quantities of high surface area silica gel particles in a fluidized bed reactor. (Methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and oxygen are used as precursors. Studies are conducted at a substrate temperature of 320 °C. The self-limiting behavior of ALD appears to be disrupted with overexposure of Pt precursor. The amount of the deposited Pt and the size of the Pt nanoparticles increase with an increasing overdose time of Pt precursor. This can be explained by the thermal decomposition of Pt precursor at the reaction temperature of 320 °C and the in situ sintering of Pt nanoparticles forming larger particles. This finding is significant and its understanding is essential for better control of Pt deposition to achieve desirable morphological and structural properties for different application requirements.  相似文献   

18.
To attain the complete filling of the channels of MCM-41 with magnetite and maghemite, we have tried out an alternative method to the incipient wetness impregnation. The mesoporous material was instilled with a Fe-carrying organic salt after subjecting the matrix to a silylation treatment. Thus, a solid of 7.7 wt.% iron-loaded MCM-41 was obtained. Different subsequent thermal treatments were used to produce γ-Fe2O3 or Fe3O4. The Mössbauer and magnetic results show that after this method, the as-prepared composite displays a size-distribution of magnetic particles. It is mainly made up of fine particles that display a superparamagnetic relaxation at room temperature and get blocked at ≈42 K for the AC susceptibility time-scale measurements both for γ-Fe2O3 and Fe3O4 particles. For both samples, about 24% of larger iron-containing phases are magnetically blocked at room temperature. For the Fe3O4 particles, this fraction undergoes the Verwey transition at about 110 K; in addition, there is a minor Fe (III) fraction that remains paramagnetic down to 4.2 K.  相似文献   

19.
Properties of different methods of magnetron sputtering (dc-MS, dual-MS and dual-HiPIMS) are studied and compared with respect to intermetallic Ti-Cu film formation. The quality and features of thin films are strongly influenced by the energy of incoming particles. The ion velocity distribution functions (IVDFs) were measured by time-resolved retarding field analyzer (RFA) in the substrate position. Thin films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD) and X-ray reflectometry (XR). Properties and crystallography of Ti-Cu films are discussed as a function of ion energy which is affected by the mode of sputtering. It was found that IVDFs measured in pulsed discharges exhibit double-peak distribution. The IVDFs reach the maximum at ion energies about  ~8 eV. The ion saturated current is highest in dual-HiPIMS discharge (~5 μA/cm2) and is mostly represented by Cu+ and Ar+ ions. The mode of sputtering influences chemical composition and film formation. The copper forms polycrystalline fcc-phase while much smaller Ti particles enwraps the copper crystallites or are part of a solid solution.  相似文献   

20.
Measured data on the temperature and velocity of Al2O3 particles of size fraction 34±6 μm in the jet emanating from a DC plasma torch with inter-electrode inserts under conditions of axisymmetric heterogeneous flow are reported. The velocity and temperature of individual particles were measured using a laser-optical diagnostic complex, which was a combination of a bifocal laser anemometer and a pyrometer based on a compact spectrometer. For measuring the temperature of individual particles in the particle-laden plasma jet, three-color pyrometry was used. The obtained data on the characteristics of particles in the jet emanating from the plasma spray torch with inter-electrode inserts equipped with a unit for radial-annular injection of powder into the plasma jet show that the implemented conditions for processing powder materials allow reaching a high homogeneity of the aggregate state of particles in the jet flow (~ 100 % of melted particles).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号