首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

2.
Reported far-infrared laser lines for five different transition systems of CH3NH2 optically pumped by a CO2 laser have been identified spectroscopically through a high-resolution Fourier transform infrared study of the C-N stretching band together with CO2-laser/microwave-sideband broad-scan and Lamb-dip measurements. From the infrared analysis plus previous far-infrared (FIR) results for the ground vibrational state, quantum numbers have been assigned for seven methylamine FIR laser transitions and their C-N stretching pump absorptions coincident with the CO2 laser lines. The assignments are confirmed through the use of closed frequency combination loops that also provide improved FIR laser frequencies to spectroscopic accuracy.  相似文献   

3.
The methanol isotopic species CH3OD has also proved to be an efficient and powerful medium to generate radiation in the far infrared (FIR) region. After the critical review of 1994, six papers have been published dealing with new FIR laser lines from this molecule. As a consequence of the use of wide tunability waveguide CO2 lasers as well as a new pulsed CO2 laser operating at hot and sequential bands, as of optical pumping sources, the total number of the FIR laser lines increased from 122 in 1994 to 227 today. In this communication we present an updated and complete catalogue of FIR laser lines generated from CH3OD. Information on wavelength, offset, relative polarization, intensity, and optimum operation pressure is generally available.  相似文献   

4.
We have investigated the 13CH3I isotopomer of methyl iodide as a source of Far Infrared (FIR) laser radiation using the optical pumping technique. The molecule is pumped by using a pulsed waveguided CO2 laser, driven by a novel all solid state power supply that lases on the 10HP band as well as the regular bands. We discovered and assigned two new FIR laser emissions and we give further spectroscopic information about polarization and pump frequency offset for five already known lines.  相似文献   

5.
Six FIR laser lines from CD3OH pumped by the 10R(36) and the 10R(18) CO2 laser lines are assigned to specific rotational energy levels in the excited C–0 stretch state. It is found that their upper laser levels are shifted by a Fermi resonance between the C–0 stretch vibration and the third and forth harmonics of the torsional mode. The Fermi resonance shifts are +0.332 cm–1 and +2.251 cm–1 for the upper laser levels pumped by the 10R(36) and the 10R(18) CO2 laser lines, respectively. Calculated frequencies of the pump and the laser transitions agree with those of the pump CO2 laser lines and the observed FIR laser lines within estimated accuracy.  相似文献   

6.
Eleven new CW far infrared (FIR) laser lines have been observed in the 600 m–1200 m range from the CF2Cl2 (Fluorocarbon 12) molecule optically pumped by a CO2 laser. A 510–4–10–3 accuracy is achieved in the measurement of the FIR wavelengths.The frequency offset between the CO2 pump center and the absorption line centers are measured using the transferred Lamb dip technique. Owing to a recent spectroscopic study of the CF2 35Cl2 molecule three lines may be assigned with great confidence as rotational transitions in thev 6 vibrational band 923 cm–1 of this main isotope.  相似文献   

7.
The frequencies of 48 optically pumped cw FIR CH2F2 laser lines have been measured relative to stabilized CO2 lasers. Uncertainties are estimated to be about 5 parts in 107.  相似文献   

8.
Twenty new cw FIR laser lines in CD3OH, optically pumped by a CO2 laser, are reported. The frequencies of 39 of the stronger laser lines were measured relative to stabilized CO2 lasers with a fractional uncertainty, as determined by the reproducibility of the FIR frequency itself, of 2 parts in 107.Contribution of the U.S. Government, not subject to copyright.  相似文献   

9.
We have increased the frequency tunability of our CW waveguide CO2 lasers by means of an acoustooptic amplitude modulator, operating at the fixed frequency of 90 MHz. The up-shifted, or down-shifted, laser optical sideband can be generated independently by adjusting the orientation of the modulator. The efficiency is larger than 50%. The frequency tunability of the CO2 laser around each laser line is thus increased by 180 MHz. To demonstrate the possibilities of this method, a source composed of the above modulator and of a CW, 300 MHz tunable waveguide CO2 laser has been used for the search of new large offset FIR laser lines from optically pumped CH3OH and13CH3OH molecules. As a result 15 and 10 new large offset laser lines were discovered respectively. New assignments of some laser lines are also proposed. We have also measured the Stark effect, the offset, and the polarization of other already known lines. In particular a Stark effect frequency tuning of about 1 GHz is demonstrated for a laser line at 208.399 m.  相似文献   

10.
    
Far-infrared (FIR) laser and infrared pump transitions of the O-18 isotopic species of methanol have been assigned for a number of CO2 laser pump lines with the aid of high-resolution Fourier transform spectra in the FIR and CO-stretch band regions. The structures of the FIR laser energy level systems and the transition assignments were established through the use of closed transition combination loops, which also yield improved accuracies for the FIR laser wavenumbers.  相似文献   

11.
Using a quasi-CW CO2 oscillator-amplifier combination with peak power 300 Watt, we have generated FIR laser emission in weak absorption bands of CH3OH. 40 new lines are reported, and their wavelengths are measured with a relative accuracy of 5×10–5. A total of 72 lines are assigned. 34 of these involve torsional n=1, 2, and 3 states of the CO stretch and the vibrational ground state. The remaining lines are associated with the CH3-rock, OH-bend, and CH3-deformation modes. The latter are located 1460 cm–1 above the ground state, and are pumped by simultaneous vibrational excitation and torsional deexcitation.  相似文献   

12.
High-resolution infrared (IR) and far infrared (FIR) Fourier transform absorption spectra have been employed to investigate assignments of FIR laser lines reported from optically-pumped13CH3OH. The spectroscopic measurements are used in conjunction with the reported IR pump and FIR laser frequencies to form closed combination loops for several systems, serving to confirm the assignments and in some cases to improve the accuracy of the FIR laser frequencies. Frequency predictions from combination differences are also presented for a number of potential new FIR laser lines.  相似文献   

13.
Electric field effects have been investigated on the output power of six far-infrared (FIR) laser lines from H12COOH optically-pumped by a CO2 laser with its polarization arranged perpendicular to the Stark field. Optoacoustic signals observed on the pump lines were hardly affected by the applied electric field up to 0.6 kV/cm. By neglecting the electric field effects on the pump transitions, Zeeman laser theory has been applied to the FIR laser transitions. Numerical calculation predicts the observed FIR output power as a function of electric field. Experessions for oscillation frequency and intensity in homogeneous limit are given, which may be applicable to any FIR Stark laser so far as the pump transition is free from electric field effects.  相似文献   

14.
Methanol (CH3OH) is considered today one of the most important active media for the generation of laser radiation in the far-infrared (FIR) spectral region. Together with ten of its other isotopic species, it is responsible for the major part of the laser lines generated by the optical pumping technique. Due to the extreme importance of those molecules as laser generators, we understood that there was a necessity of a comprehensive work which would include as much pratical information as possible about each line.Chang et al(1) early recognized methanol as a source of strong FIR laser lines. Since then, more than 100 papers were published containing information about new laser emission. Recently, Moruzzi et al(114) presented a review of 575 lines produced by12CH3OH. In the present paper, we have extended the review to the various isotopic modifications of this molecule (namely13CH3OH, CD3OH,13CD3OH, CD3OD,13CD3OD, CH3OD, CH 3 18 OH, CH2DOH, CH2DOD and CHD2OH), a total of nearly 2000 lines with wavelengths ranging from 19µm to 3030µm.  相似文献   

15.
27 new, large offset, FIR laser lines from13CH3OH and one from13CD3OH have been discovered by pumping with a high tunability waveguide CW CO2 laser. Optoacoustic measurements of isotopic methyl alcohol have also been performed and the pump offsets of the new and of previously known lines have been measured and checked. Frequency tunability by Stark effect has been observed for 6 strong lines. Some assignments are discussed.  相似文献   

16.
《Infrared physics》1992,33(2):133-139
The Q branch of the C-O stretching fundamental band of 13CD3OH has been investigated. Starting from a high resolution (4 × 10−3cm−1) infrared Fourier transform spectrum and using a waveguide CO2 laser of 300 MHz tunability and an acoustooptic modulator for an extension of ±90 MHz, 31 new FIR laser lines have been observed. The related absorptions have been measured by means of optoacoustic detection. The frequency of one new FIR laser line was also measured. Eight tentative assignments are proposed for the IR absorption and FIR laser emissions.  相似文献   

17.
The optoacoustic spectrum of CH3Br around 10 m band lines of a tunable cw waveguide CO2 laser is investigated. Several new infrared absorptions are observed and most of the correspond ing molecular transitions are assigned. Far infra red laser action is reported by pumping with the same CO2 laser: pump offsets are given using the Transferred Lambs dip (TLD) technique. A new FIR laser emission is obtained and assigned. An optoacoustic Laser Stark spectroscopy technique is used to investigate off resonance infrared tran sitions.  相似文献   

18.
A system for measuring the absolute frequency of a far-infrared (FIR) laser is described. Josephson point contacts have been utilized in the system as a frequency harmonic mixer connecting microwaves and optically pumped CH3OH laser lines. The Josephson point contacts are capable of generating beat signals of 90 GHz microwaves and FIR waves of up to 4.25 THz. To measure the frequency of the beat signals from the Josephson junction with a frequency counter, tracking oscillators have been developed, which tracks the beat signals by phase locking and regenerate clean signals for frequency counting. It is shown that the absolute frequency can be measured to an accuracy of about 100 Hz by using the tracking oscillators.  相似文献   

19.
The IR absorption in CH3OH in the vicinity of CO2 laser lines has been measured quantitatively by use of a 300 MHz tunable waveguide CO2 laser with output powers of about 3 W. Information on frequency offsets from the CO2 line centers, small signal and saturated absorption coefficients of FIR laser pump transitions is obtained. Some stronger pump transitions with frequency offsets larger than 50 MHz gave rise to the observation of 8 new FIR emission lines with wavelengths from 43 to 125 μm.  相似文献   

20.
We report new FIR laser lines from 13CH2F2 molecules optically pumped by a waveguide CO2 laser. The increased tunability (300 MHz) with respect to a conventional CO2 laser allows the pumping of 13CH2F2 vibrational transitions of large offset. 34 new laser lines have been discovered, ranging from 113.1 m to 491.4 m in wavelength, thus increasing the number of known FIR laser lines from this important molecule to 99. For all the new lines and many (36) of those known previously, precise offset measurements through the transferred Lamb-dip technique were performed. The frequency of six new laser lines was also directly measured by heterodyne detection with known laser lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号