首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Although considerable effort has been devoted to the design of various nanoprobes for the fluorescent detection of multiple biomarkers in a single assay, they often suffer from emission‐overlapping, owing to small Stokes shifts and wide emission spectra, which results in cross‐talk and inaccurate quantification. Herein, we report the design and synthesis of a new nanoprobe for multienzyme detection with completely resolved emission peaks under single‐wavelength excitation. The probe was assembled by attaching a cleavable peptide spacer, which was comprised from a matrix metalloproteinase‐2 (MMP‐2) substrate and a MMP‐7 substrate, onto the surface of gold nanoparticles (AuNPs) through cysteine residues. A lanthanide complex, BCTOT‐EuIII (BCTOT=1,10‐bis(5′‐chlorosulfo‐thiophene‐2′‐yl)‐4,4,5,5,6,6,7,7‐octafluorodecane‐1,3,8,10‐tetraone), and 7‐amino‐4‐methylcoumarin (AMC) were attached to the N terminus and the C terminus of the peptide, respectively. In the presence of one or both targeting enzymes, the substrate was cleaved and fluorescence resonance energy transfer (FRET) between the dyes and AuNPs was prohibited, thereby resulting in the dramatic fluorescence emission of dyes. Importantly, there was no emission cross‐talk between the two dyes, thereby ensuring accurate detection of each enzyme. Based on this, the simultaneous fluorescence image of MMP‐2 and MMP‐7 was accomplished in living cells under single wavelength excitation. The apparent differences in the fluorescence imaging indicated distinct differences between the expression levels of MMPs between the human normal liver cells and the human hepatoma cells.  相似文献   

2.
A simple, selective and sensitive “signal-on” electrogenerated chemiluminescence (ECL) biosensing method was developed for matrix metalloproteinase 2 (MMP-2). Ru(bpy)32+, gold nanoparticles (AuNPs) and Nafion were modified onto glassy carbon electrode (GCE) to form Ru(bpy)32+/AuNPs/Nafion/GCE as sensitive ECL platform and then ferrocene (Fc) labeled peptide was assembled onto the modified electrode to form ECL biosensing platform. The ECL intensity increased when the ECL biosensing electrode reacted with MMP-2 because of MMP-2-induced cleavage of Fc labeled peptide. The ECL method was applied to determine MMP-2 with detection limit of 0.3 ng/mL and one-step recognition, which is promising for point-of-care test of protease.  相似文献   

3.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.  相似文献   

4.
The synthesis of a new, robust fluorescence‐resonance‐energy‐transfer (FRET) system is described. Its donor chromophore is derived from an N‐allyl‐substituted quinolinone attached to 4‐bromophenylalanine via Heck cross‐coupling. The resulting Fmoc‐protected derivative 11 was used as building block in solid‐phase peptide synthesis (SPPS). As FRET acceptor, a sulfonylated ruthenium(II)–bathophenanthroline complex with a peripheral COOH function was prepared for covalent attachment to target molecules. The UV/VIS absorption and emission spectra of peptides bearing only the donor (D) or acceptor (A) dye showed a good overlap of the emission band of the donor with the absorption band of the acceptor. The fluorescence spectra of a peptide bearing both dyes revealed an additional emission after excitation of the donor, which is due to indirect excitation of the acceptor via FRET. The long fluorescence lifetime of the RuII complex (0.53 μs) makes it well‐suited for time‐resolved measurements. As a first application of this new FRET system, the peptide 18 , with the recognition sequence for the protease thrombin, flanked by the two dyes, was synthesized and successfully cleaved by the enzyme. The change in the ratio of the fluorescence intensities could be determined.  相似文献   

5.
高效荧光内滤分析的关键是使猝灭剂的吸收峰与荧光团的激发峰或发射峰最大限度地重叠.本研究将Mn掺杂ZnS量子点(Mn-ZnS QDs)作为内滤体系的荧光体,4-硝基苯-β-D-葡糖苷酸(PNPG)作为吸收体,实现了β-葡萄糖醛酸酶(GUS)的特异性检测.PNPG的吸收光谱与Mn-ZnS QDs的激发光谱大幅重叠,能够高效猝灭Mn-ZnS QDs的磷光.由于Mn-ZnS QDs具有较大的斯托克斯位移(约300 nm),其激发光谱和发射光谱与GUS的酶解产物PNP的吸收光谱几乎无重叠,因而实现了GUS的磷光Turn-on检测.此外,Mn-ZnS QDs具有优异的室温磷光性质,可以避开生物组织荧光背景,从而可有效应用于生物样品分析.据此建立了一种基于内滤效应的GUS磷光探针,实现了对大肠杆菌的测定.本方法在最优的实验条件下对10~300 U/L的GUS有线性响应,检出限为7 U/L,且本策略相对于紫外-可见光谱法有很好的抗基底干扰能力.  相似文献   

6.
Fluorescently labeled oligonucleotides are commonly employed as probes to detect specific DNA or RNA sequences in homogeneous solution. Useful probes should experience strong increases in fluorescent emission upon hybridization with the target. We developed dual labeled peptide nucleic acid probes, which signal the presence of complementary DNA or RNA by up to 450-fold enhancements of fluorescence intensity. This enabled the very sensitive detection of a DNA target (40 pM LOD), which was detectable at less than 0.1% of the beacon concentration. In contrast to existing DNA-based molecular beacons, this PNA-based method does not require a stem sequence to enforce dye-dye communication. Rather, the method relies on the energy transfer between a "smart" thiazole orange (TO) nucleotide, which requires formation of the probe-target complex in order to become fluorescent, and terminally appended acceptor dyes. To improve upon fluorescence responsiveness the energy pathways were dissected. Hydrophobic, spectrally mismatched dye combinations allowed significant (99.97%) decreases of background emission in the absence of a target. By contrast, spectral overlap between TO donor emission and acceptor excitation enabled extremely bright FRET signals. This and the large apparent Stokes shift (82 nm) suggests potential applications in the detection of specific RNA targets in biogenic matrices without the need of sample pre-processing prior to detection.  相似文献   

7.
Shen XC  Jiang LF  Liang H  Lu X  Zhang LJ  Liu XY 《Talanta》2006,69(2):456-462
A novel method for the determination of 6-mercaptopurine (6MP) has been developed based on fluorescence enhancement of Au nanoparticles (AuNPs). The fluorescent AuNPs with mean diameter of ∼15 nm were synthesized in aqueous solution, exhibiting the stable maximum emission at 367 nm, under the excitation at wavelength of 264 nm. The AuNPs self-assembly with 6MP were characterized with transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. The results revealed that the surface attachment through versatile binding sites of S10, N3, N9 and N7 atoms in 6MP produced the interparticle coupling and formed aggregates of AuNPs. As a result, the fluorescence emission enhancement was significantly observed upon AuNPs self-assembly with 6MP. The fluorimetric determination under optimal conditions indicated that 6MP could be quantified in good linearity range of 6.35 × 10−8 to 3.05 × 10−7 M, with a low detection limit of 4.82 × 10−10 M. The relative standard deviation (n = 11) was 1.8% at 2.54 × 10−8 M 6MP concentration level. The proposed method was successfully applied for the determination of 6MP in spiked human urine. The probable fluorescence enhancement mechanism was also discussed there.  相似文献   

8.
Fluorescence spectroscopy has the potential to improve the in vivo detection of intraepithelial neoplasias; however, the presence of inflammation can sometimes result in misclassifications. Inflammation is a common and important pathologic condition of epithelial tissues that can exist alone or in combination with neoplasia. It has not only been associated with the presence of cancer but also with the initiation of cancer by damage induced due to the oxidative activity of inflammatory cells. Microscopic examination of cervical biopsies has shown increased numbers of polymorphonuclear and mononuclear leukocytes in inflamed tissues mostly confined to the stroma. The purpose of this study was to characterize the fluorescence properties of human polymorpho- and mononuclear leukocytes and compare their fluorescence to that of cervical cancer cells. Human neutrophils were purified from peripheral blood and their fluorescence characterized over an excitation range of 250-550 nm. There are four notable excitation emission maxima: the tryptophan peak at 290 nm excitation, 330 nm emission; the NAD(P)H peak at 350 nm excitation, 450 nm emission, the FAD peak at 450 nm excitation, 530 nm emission and an unidentified peak at 500 nm excitation, 530 nm emission. Treatment of these peripheral blood neutrophils with 40 nM phorbol myristate acetate or with the chemotactic peptide formyl-Met-Leu Phe (1 M) demonstrated a significant increase in NAD(P)H fluorescence. Isolated mononuclear cells have similar emission peaks for tryptophan and NAD(P)H and a small broad peak at 450 nm excitation, 530 nm emission suggestive of FAD. Comparison of the fluorescence from leukocytes to epithelial cancer cell fluorescence has demonstrated the presence of these fluorophores in different quantities per cell. The most notable difference is the high level of tryptophan in cervical epithelial cancer cells, thus offering the potential for discrimination of inflammation.  相似文献   

9.
A novel method for studying unlabeled living mammalian cells based on their autofluorescence (AF) signal in a prototype microfluidic device is presented. When combined, cellular AF detection and microfluidic devices have the potential to facilitate high-throughput analysis of different cell populations. To demonstrate this, unlabeled cultured cells in microfluidic devices were excited with a 488 nm excitation light and the AF emission (> 505 nm) was detected using a confocal fluorescence microscope (CFM). For example, a simple microfluidic three-port glass microstructure was used together with conventional electroosmotic flow (EOF) to switch the direction of the fluid flow. As a means to test the potential of AF-based cell sorting in this microfluidic device, granulocytes were successfully differentiated from human red blood cells (RBCs) based on differences in AF. This study demonstrated the use of a simple microfabricated device to perform high-throughput live cell detection and differentiation without the need for cell-specific fluorescent labeling dyes and thereby reducing the sample preparation time. Hence, the combined use of microfluidic devices and cell AF may have many applications in single-cell analysis.  相似文献   

10.
Light emitting diode excitation emission matrix fluorescence spectroscopy   总被引:2,自引:0,他引:2  
Hart SJ  JiJi RD 《The Analyst》2002,127(12):1693-1699
An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (< 5 ppb). The LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.  相似文献   

11.
Fluorescence studies of selected polychlorinated biphenyl (PCB) congeners and Aroclor mixtures were conducted using enhanced photoactivated luminescence. Diphenylamine (DPA) was used as a photoactivator. DPA reacts with PCBs to form a fluorescent photoproduct under UV activation. The sensitivities of fluorescence detection using three different solid substrates were compared. Background studies of the substrates and DPA blanks were also conducted to determine the substrate with the best detection characteristics for enhanced photoactivated fluorescence. It was found that the Envi disk with a glass-fiber mesh and C-18-modified silica provides more analyte access for fluorescence detection, thereby providing best sensitivity. By comparison of the fluorescence from pure PCB congener–DPA complexes, the more coplanar congeners exhibited a red shift in excitation and emission as compared with theortho-substituted nonplanar congeners. These studies may prove useful in determining trends relating fluorescence intensity and toxicity factors.  相似文献   

12.
We describe the design, synthesis and fluorescent profile of a family of self-calibrating dyes that provide ratiometric measurements of fluid viscosity. The design is based on covalently linking a primary fluorophore (reference) that displays a viscosity-independent fluorescence emission with a secondary fluorophore (sensor) that exhibits a viscosity-sensitive fluorescence emission. Characterization of fluorescent properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye. The chemical structures of both fluorophores and the linker length have been evaluated in order to optimize the overall brightness and sensitivity of the viscosity measurements. We also present an application of such ratiometric dyes for the detection of membrane viscosity changes in a liposome model.  相似文献   

13.
A concept of fluorescent metal ion sensing with an easily tunable emission wavelength is presented and its principle demonstrated by detection of Cu(2+). A fluorescein dye was chemically modified with a metal chelating group and then attached to the terminus of ss-DNA. This was combined with a complementary ss-DNA modified with another fluorescent dye (ATTO 590), emitting at a longer wavelength. In the assembled duplex, fluorescence resonance energy transfer (FRET) between the fluorescein donor (excited at 470 nm) and the ATTO 590 acceptor (emitting at 624 nm) is observed. Proper positioning within the rigid DNA double helix prevents intramolecular contact quenching of the two dyes. Coordination of paramagnetic Cu(2+) ions by the chelating unit of the sensor results in direct fluorescence quenching of the fluorescein dye and indirect (by loss of FRET) quenching of the ATTO 590 emission at 624 nm. As a result, emission of the acceptor dye can be used for monitoring of the concentration of Cu(2+), with a 20 nM detection limit. The emission wavelength is readily tuned by replacement of ATTO-DNA by other commercially available DNA-acceptor dye conjugates. Fluorescent metal ion sensors emitting at >600 nm are very rare. The possibility of tuning the emission wavelength is important with respect to the optimization of this sensor type for application to biological samples, which usually show broad autofluorescence at <550 nm.  相似文献   

14.
《Analytical letters》2012,45(13):2029-2039
A novel platform for detection of histone deacetylase (HDAC) activity has been developed using a gold nanoparticle based fluorescence resonance energy transfer (FRET) immunoassay. This strategy combined the acetylated fluorescent peptide probe with the anti-acetyl antibody functionalized Au NPs to measure the deacetylation activity of histone deacetylase sirtuin2. Enzymatic deacetylation of the acetylated peptide substrate was detected by a gold nanoparticle labeled anti-acetyl peptide antibody with the formation of the immunocomplex resulting in energy transfer between the fluorescent dyes and the nanoparticles. Due to the highly efficient fluorescence quenching of the gold nanoparticles, the proposed method shows a low background and favorable sensitivity. In addition, this approach can be applied to the evaluation of HDAC inhibitor activity. The proposed platform should facilitate the development of new assays for HDAC activity and other histone modifications.  相似文献   

15.
UV- and visible-excited fluorescence detection strategies were compared for nucleic acids separated by capillary electrophoresis (CE). A dual-polymer sieving matrix consisting of hydroxypropylmethylcellulose and poly(vinylpyrrolidone) was used to separate DNA fragments from a 100-base pair ladder and RNA from individual cells. Two nucleic acid dyes, SYBR Gold and SYBR Green I, were evaluated for their performance at both UV (275 nm) and visible (488 nm) excitation wavelengths. While SYBR Gold-bound RNA from single cells yielded a substantially reduced UV-excited signal compared to that with visible excitation (as expected), the sensitivity of SYBR Gold-bound double-stranded DNA was comparable for UV and Vis excitation wavelengths. This study reveals the first demonstration of using SYBR Gold dyes for DNA detection following separation with CE and also the first example of SYBR-based detection of RNA sampled and separated from individual cells.  相似文献   

16.
The donor–acceptor (D–A) type dipolar fluorophores, an important class of luminescent dyes with two-photon absorption behaviour, generally emit strongly in organic solvents but poorly in aqueous media. To understand and enhance the poor emission behaviour of dipolar dyes in aqueous media, we undertake a rational approach that includes a systematic structure variation of the donor, amino substituent of acedan, an important two-photon dye. We identify several factors that influence the emission behaviour of the dipolar dyes in aqueous media through computational and photophysical studies on new acedan derivatives. As a result, we can make acedan dyes emit bright fluorescence under one- and two-photon excitation in aqueous media by suppressing the liable factors for poor emission: 1,3-allylic strain, rotational freedom, and hydrogen bonding with water. We also validate that these findings can be generally extended to other dipolar fluorophores, as demonstrated for naphthalimide, coumarin and (4-nitro-2,1,3-benzoxadiazol-7-yl)amine (NBD) dyes. The new acedan and naphthalimide dyes thus allow us to obtain much brighter two-photon fluorescent images in cells and tissues than in their conventional forms. As an application of these findings, a thiol probe is synthesized based on a new naphthalimide dye, which shows greatly enhanced fluorescence from the widely used N,N-dimethyl analogue. The results disclosed here provide essential guidelines for the development of efficient dipolar dyes and fluorescence probes for studying biological systems, particularly by two-photon microscopy.  相似文献   

17.
采用化学气相沉积法生长多晶石墨烯(Graphene, G),转移至聚对苯二甲酸乙二醇酯(PET)薄膜表面,通过控制金溶胶蒸发速率,在多晶石墨烯表面组装均匀分布的亚单层金纳米粒子(AuNPs);然后修饰巯基乙酸,通过共价交联反应将葡萄糖氧化酶固定于AuNPs表面,构建基于PET膜的石墨烯/金纳米粒子/葡萄糖氧化酶(G/AuNPs/GOD)柔性电极.此电极在工作电位0.6 V(vs.SCE电极)、pH 7.0磷酸盐缓冲溶液、室温25℃条件下,差分脉冲伏安法响应电流与被测葡萄糖浓度在0.05~10.55 mmol/L范围内呈线性关系,线性方程为I(108A)=0.2629 C(mmol/L)+1.4149,线性相关系数 r=0.9955,检出限1 μmol/L (3σ). G/AuNPs/GOD柔性电极的制备可为特定环境和可穿戴设备的葡萄糖检测提供了新的途径和方法,拓展了葡萄糖检测的应用范围.  相似文献   

18.
Absorption, luminescence excitation and emission spectra of nine compounds from 4,8,4'-trimethylpsoralen, 4,4'-dimethylangelicin, and 1,2,3,4-tetrahydrocarbazole series with various terminal substituents were studied in water and 2-propanol. Proceeding from the data obtained in the present and also some previous studies we have formulated the main rules concerning a general mechanism of changes in the fluorescence characteristics of DNA-specific dyes depending on their chemical structure, substrate properties, and measurement medium.  相似文献   

19.
Solid-emissive rhodamine complexes are obtained by mixing commercial rhodamine B (RhB) with the recently developed solid-emissive boron 2-(2′-pyridyl)imidazole (BOPIM) derivatives. The formation of intermolecular hydrogen bonds between RhB and BOPIM dyes plays a key role in the emission of RhB in the solid state. The disappearance of emissions from BOPIM dyes indicates the occurrence of efficient intermolecular fluorescence resonance energy transfer (FRET). The hydrogen bond also helps prevent the intermolecular interaction between the carboxyl moieties on RhB to alleviate concentration-induced fluorescence quenching because the emission of the complexes can be directly lightened by excitation at the RhB absorption (510 nm). Our results indicate that intermolecular FRET assisted by non-covalent interactions can be an efficient tool for constructing red or near-infrared solid emitters.  相似文献   

20.
We report a high-sensitivity, disposable lab-on-a-chip with a thin-film organic light-emitting diode (OLED) excitation source and an organic photodiode (OPD) detector for on-chip fluorescence analysis. A NPB/Alq3 thin-film green OLED with an active area of 0.1 cm(2) was used as the excitation source, while a CuPC/C(60) thin-film OPD with 0.6 cm(2) active area was used as a photodetector. A novel cost-effective, cross-polarization scheme was used to filter out excitation light from a fluorescent dye emission spectrum. The excitation light from the OLED was linearly polarized and used to illuminate a microfluidic device containing a 1 microL volume of dye dissolved in ethanol. The detector was shielded by a second polarizer, oriented orthogonally to the excitation light, thus reducing the photocurrent due to excitation light leakage on the detector by approximately 25 dB. The fluorescence emission light, which is randomly polarized, is only attenuated by approximately 3 dB. Fluorescence signals from Rhodamine 6G (peak emission wavelength of 570 nm) and fluorescein (peak emission wavelength of 494 nm) dyes were measured in a dilution series in the microfluidic device with emission signals detected by the OPD. A limit-of-detection of 100 nM was demonstrated for Rhodamine 6G, and 10 microM for fluorescein. This suggests that an integrated microfluidic device, with an organic photodiode and LED excitation source and integrated polarizers, can be fabricated to realize a compact and economical lab-on-a-chip for point-of-care fluorescence assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号