首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed uranyl aquo chloro complexes of the type [UO2(H2O)xCly]2-y (y = 1, 2, 3, 4; x + y = 4, 5) have been optimized at the BLYP, BP86, and B3LYP levels of density functional theory in vacuo and in a polarizable continuum modeling bulk water (PCM) and have been studied at the BLYP level with Car-Parrinello molecular dynamics (MD) simulations in the gas phase and in explicit aqueous solution. Free binding energies were evaluated from static PCM data and from pointwise thermodynamic integration involving constrained MD simulations in water. The computations reveal significant solvent effects on geometric and energetic parameters. Based on the comparison of PCM-optimized or MD-averaged uranyl-ligand bond distances with EXAFS-derived values, the transition between five- and four-coordination about uranyl is indicated to occur at a Cl content of y = 2 or 3.  相似文献   

2.
The polarographic behavior of uranium(VI)-succinate complexes was studied in 0.5M NaClO4 medium at 30°C at a dropping mercury electrode. It was found that only the doubly charged succinate ion formed the complexes stable enough to be detected. The experimental evidence for this is discussed. The stability constant of uranium(V) (succinate)2 complex was evaluated.  相似文献   

3.
The intermolecular ligand exchange in uranyl nitrate complexes with TBP and TOPO is studied by31P-NMR. The constant rates at 25°C in CCl4 are: (8.47±1.86)·103 s?1 for U-TBP and (1.3±0.04)·104M?1·s?1 for U-TOPO system. The very similar activation parameters values of the ligand exchange suggest the same mechanism for both systems, namely an one-step interchange mechanism. The differences between the systems regarding the rate equations and the extraction properties are discussed.  相似文献   

4.
The solid-state syntheses of complexes of uranyl acetate dihydrate andN-phenylthiourea have been attempted by heating various stoichiometric mixtures of the reactants directly in a DSC and in a TA apparatus. Both the DSC and the TG results indicate that only the 1∶1 adduct is formed, independently of the molar ratios of the reactants. It appears that the reaction is complete only with a large excess ofN-phenylthiourea, in agreement with IR data.  相似文献   

5.
The coordination of the U(IV) and U(VI) ions as a function of the chloride concentration in aqueous solution has been studied by U L(III)-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The oxidation state of uranium was changed in situ using a gastight spectroelectrochemical cell, specifically designed for the safe use with radioactive solutions. For U(VI) we observed the complexes UO2(H2O)5(2+), UO2(H2O)4Cl+, UO2(H2O)3Cl2(0), and UO2(H2O)2Cl3- with [Cl-] increasing from 0 to 9 M, and for U(IV) we observed the complexes U(H2O)9(4+), U(H2O)8Cl3+, U(H2O)(6-7)Cl2(2+), and U(H2O)5Cl3+. The distances in the U(VI) coordination sphere are U-Oax = 1.76+/-0.02 A, Oeq = 2.41 +/- 0.02 A, and U-Cl = 2.71 +/- 0.02 A; the distances in the U(IV) coordination sphere are U-O = 2.41 +/- 0.02 A and U-Cl = 2.71 +/- 0.02 A.  相似文献   

6.
The thermal decomposition of some mixed uranyl complexes with Schiff bases and DMSO, EtOH or (Ph)3PO as neutral ligand, were investigated and the corresponding activation energy, E*a, and enthalpy of dissociation, ΔHd, values were calculated.

The results obtained indicate that for the same neutral ligand, the thermal stability of the uranyl complexes is influenced by the Schiff base used; for the same Schiff base, the presence of (Ph)3PO results in a greater thermal stability of the mixed complexes than when the other two neutral ligands are present.  相似文献   


7.
The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 ? of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.  相似文献   

8.
Density functional theory calculations were performed on uranyl complexed with nitrate and monoamide ligands (L) [UO(2)(NO(3))(2)·2L]. The obtained results show that the complex stability is mainly governed by two factors: (i) the maximization of the polarizability of the coordinating ligand and (ii) the minimization of the steric hindrance effects. Furthermore, the electrostatic interaction between ligands and uranium(vi) was found to be a crucial parameter for the complex stability. These results pave the way to the definition of (quantitative) property/structure relationships for the in silico screening of monoamide ligands with improved extraction efficiency of uranium(vi) in nitrate acidic solution.  相似文献   

9.
10.
The bis(imido) uranium(VI)-C(5)H(5) and -C(5)Me(5) complexes (C(5)H(5))(2)U(N(t)Bu)(2), (C(5)Me(5))(2)U(N(t)Bu)(2), (C(5)H(5))U(N(t)Bu)(2)(I)(dmpe), and (C(5)H(5))(2)U(N(t)Bu)(2)(dmpe) can be synthesized from reactions between U(N(t)Bu)(2)(I)(2)(L)(x) (L=THF, x=2; L=dmpe, x=1) and Na(C(5)R(5)) (R=H, Me); these complexes represent the first structurally characterized C(5)H(5)-compounds of uranium(VI) and they further highlight the differences between UO(2)(2+) and the bis(imido) fragment.  相似文献   

11.
Potentiometric and microcalorimetric titration techniques were applied for the determination of the Gibbs free energies and enthalpies of the protonation and U(VI) complexation of some carboxylic acids (formic, acetic, glycolic, and propionic acids) in 1.0 M NaClO4 solution at 25 °C. By using the values of ΔG determined by potentiometric titrations, the results of calorimetric titrations were analyzed to give the values of ΔH and ΔS. These enthalpy values indicated that the protonation and uranyl(VI) complexation of these carboxylates were mainly entropy-driven, that is, ∣–TΔS  ∣ΔH∣ in ΔG = ΔH  TΔS. The comparison of TΔSm values for uranyl acetate and glycolate complexation with those for europium(III) complexation revealed that the complexation of U(VI) was accompanied by larger entropy changes due to the limited space in its coordination sphere caused by the steric hindrance of two oxygens in the linear dioxo structure of uranyl ion.  相似文献   

12.
Li TT  Cen MC 《Talanta》1969,16(4):544-550
The complexes of uranium(VI) and lead(II) with 1-glutamine were investigated polarographically. For uranium(VI), the complexes UO(2)G(+2), UO(2)G(2)(+2) and UO(2)(OH)Ga(2)(+) were identified at pH < 2.5, pH 2.5-4.1 and pH 4.1-5.2 respectively. With lead(II), complexes PbG(+2), Pb(OH)G(+) and Pb(OH)G(2)(+) were formed at pH 2.0-5.0, pH 5.0-7.0, and pH 7.0-8.5, respectively. The concentration dissociation constant of Pb(OH)G(2)(+) was found to be pK(c) = 10.16 +/- 0.04 at ionic strength 0.6.  相似文献   

13.
Diphenyldiazomethane effects a two-electron oxidation of the uranium(IV) monoimido complex (C5Me5)2U(=N-2,4,6-t-Bu3C6H2) to give the uranium(VI) mixed bis(imido) complex, (C5Me5)2U(=N-2,4,6-t-Bu3C6H2)(=N-N=CPh2), which undergoes a rare cyclometallation reaction upon mild thermolysis to afford a uranium(IV) bis(amide) complex that results from net addition of a C-H bond of an ortho tert-butyl group across the N=U=N core.  相似文献   

14.
The idea of photochemical abatement of the Cr(VI) pollution has been verified by investigating the photoreduction mediated by aliphatic alcohols under conditions mimicking the environmental ones. Effects of the alcohol nature, pH and presence of oxygen are analysed. The time-resolved spectra are used to follow the generation of the transient chromium Cr(V), Cr(IV) and Cr(II) species and the R1R2CHOH√+ radicals. A direct interaction between chromate(VI) and an electron donor is a precondition of the photoreduction via the photoinduced electron transfer (PET). Two pathways of the PET are identified: one-electron transfer for intermolecular and two-electron transfer for the intramolecular systems. In the case of the alcohol mediators the option is pH-controlled.  相似文献   

15.
Satellites were observed on 4f photoelectron spectra of uranium (IV) complexes, while none was seen for diamagnetic uranyl complexes. Photoelectron lines of oxygen 1s coordinated to the uranium ion were broad for NaUO3 and uranyl complexes.  相似文献   

16.
17.
The uranium(VI) peroxo complexes containing Mannich base ligands having composition [UO(O2)L-L(NO3)2] {where L-L = morpholinobenzyl acetamide (MBA), piperidinobenzyl acetamide (PBA), morpholinobenzyl benzamide (MBB), piperidinobenzyl benzamide (PBB), morpholinomethyl benzamide (MMB), piperidinomethyl benzamide (PMB), morpholinobenzyl formamide (MBF)}, piperidinobenzyl formamide (PBF) are reported. In a typical reaction UO2(NO3)2 · 6H2O (1 mmol, 0.502 g) was dissolved in methanol. An equimolar (1 mmol) methanolic solution (30 mL) of the ligand (Mannich bases) was added to a solution of uranyl nitrate followed by addition of potassium hydroxide (KOH) (2 mmol, 0.1122 g). The solution was refluxed for 15 min and then 10 mL of 30% hydrogen peroxide (H2O2) was added dropwise and was refluxed for an additional 1 h. The synthesized complexes have been characterized by various physico-chemical techniques, viz. elemental analysis, molar conductivity, magnetic susceptibility measurements, infra red, electronic, mass spectral and TGA/DTA studies. These studies revealed that the synthesized complexes are non-electrolytic and diamagnetic in nature. The ligands are bound to metal in a bidentate mode through carbonyl oxygen and the ring nitrogen. Thermal analysis result provides conclusive evidence for the absence of water molecule in the complexes. Mass spectra confirm the molecular mass of the complexes. Antibacterial activity of complexes revealed enhanced activity of complexes as compared to corresponding free ligands. Molecular modeling suggests pentagonal bipyramidal structure for complexes.  相似文献   

18.
The order of extraction of Mo(VI) from 1M acid solutions by 5% (v/v) LIX 622 (HL) in benzene is HCl>HNO3>HClO4>H2SO4, and extraction decreases with increasing concentration of HCl and H2SO4, and increases slightly with increasing concentration of HNO3 and HClO4. The extracted species is shown to be MoO2L2 as established by IR data of organic extracts and the extracted species in the solid form. Extraction is almost quantitative at and above 10% LIX 622, and is found to be independent of [Mo(VI)] in the range of 10–4 to 10–3 M. The diluents CCl4, CHCl3 and C6H6 are found to be superior to solvents of high dielectric constant for extraction of Mo(VI). Extraction of uranium(VI) by 10% (v/v) LIX 622 in benzene was found to increase with increasing equilibrium pH (3.0 to 6.0), and becomes quantitative at pH 5.9. Tributyl phosphate acts as a modifier up to 2% (v/v). Thorium(IV) is almost not extracted by LIX 622 or its mixture. Separation of Mo(VI) and U(VI) is feasible.  相似文献   

19.
We here report the enhancement of a sonochemical effect (chemical reaction induced by ultrasound irradiation) by a Pt black catalyst; the sonochemical reduction of the highly stable U(VI) was demonstrated using this catalytic reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号