首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface properties of polymeric devices that are used to regenerate nervous damage are a point to be considered for axon regeneration in nerve system. In our previous studies, we prepared a wettability gradient on polyethylene (PE) surfaces using a corona discharge treatment from a knife-type electrode whose power increases gradually along the sample length. The PE surfaces were oxidized gradually with increasing power. The effect of surface wettability on the different types of cells has an important role for cell adhesion and proliferation. The purpose of this study is to investigate neurite formation on polymer surfaces with different wettability. Induction and growth of neurites from the rat pheochromocytoma (PC-12) cells attached on the polymer surfaces with different hydrophilicity were investigated using the wettability gradient PE surfaces prepared by a corona discharge treatment. Neurites were investigated for number and length of neurites in terms of surface wettability. It was observed that neurite formation of PC-12 cells was increased more onto the positions with moderate hydrophilicity of the wettability gradient surface than onto the more hydrophobic or hydrophilic positions. From those results, it could be assumed that initial adhesion of PC-12 cells was caused by more calf serum (CS) protein than nerve growth factor (NGF), whereas the neurite formation of PC-12 cells was caused by more NGF than CS protein. It follows from what has been said thus far that PC-12 cells are a differentiated neuronal phenotype with a long neurite at around the position 2.5 cm (water contact angle of about 55 deg). In conclusion, surface wettability plays an important role for neurite formation on the polymer surfaces for axon regeneration.  相似文献   

2.
Embryoid bodies (EBs), derived from aggregated embryonic stem (ES) cells, are capable of differentiating into all three germ layers, including the endoderm, mesoderm, and ectoderm. The initial stage of EB differentiation is the formation of a primitive endoderm (PE) layer located at the periphery of the aggregate. Raman microspectroscopy was employed to segregate PE cells from undifferentiated ES cells. The Raman spectra of the PE cells of the periphery of EBs, formed upon the withdrawal of leukemia inhibitory factor (LIF), were compared with those of the undifferentiated ES cells of the core of cell aggregates, formed in the presence of LIF. It was noticed that the PE cells have high contents of proteins and low contents of nucleic acids, lipids, and carbohydrates compared with ES cells. Also, we established the presence of another population of PE cells located in the core of the EBs. In addition, we identified some specific Raman markers to distinguish PE cells from ES cells (e.g., I 1003/I 937). This is the first study to investigate the PE cells of live EBs and define some Raman markers to distinguish them from undifferentiated ES cells.  相似文献   

3.
We study mixtures of charged surfactants, which alone in solution form uni- and multilamellar vesicles, and oppositely charged polyelectrolytes (PEs). The phase behavior is investigated at fixed surfactant concentration as a function of the PE-to-surfactant charge ratio, x. We find that, for x > 0, aggregates form. Light microscopy and X-ray scattering experiments show that the isoelectric point plays a crucial role, since the morphology and the microscopic structure of the aggregates are different before (x < or = 1) and after the isoelectric point (x > 1). To better understand the dynamics for the formation of PE/surfactant complexes, we perform light microscopy experiments where we follow in real time the effect of a PE solution on one multilamellar vesicle (MLV). We find that the PE induces a peeling of the bilayers of the MLV one by one. The peeling is accompanied by strong shape fluctuations of the MLV and leads ultimately to a pile of small aggregates. This novel phenomenon is analyzed in detail and discussed in terms of PE-induced tension and pore formation and growth in a surfactant bilayer.  相似文献   

4.
Binary blends of linear low density polyethylene (PE) and polypropylene (PP), and ternary blends of PE, PP, and EP copolymer (EPR) were prepared in a finely mixed state. In all blends the ratio of PP to PE was 85/15. In some of the blends, the PE component was labeled with a fluorescent dye; in other blends, the EPR component was labeled. These blends were investigated by laser scanning confocal fluorescence microscopy [LCFM] as a function of annealing time as well as EPR compatibilizer content. In this way we were able to follow the evolution of sample morphology and the location of the EPR in the blends. The presence of EPR in the blends retards the growth of droplets of the dispersed PE phase. When EPR was added in amounts up to 5 wt %, it tended to cover the PE droplets in patches rather than form a true core-shell structure. In the LCFM images, the EPR/PP interface appeared sharper than the EPR/PE interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 979–991, 1997  相似文献   

5.
In this study, the potential of recycled poly(ethylene terepthalate) (rPET) as a well‐defined reinforcing material for the in situ microfibrillar‐reinforced composite (iMFC) was investigated in comparison with that of liquid crystalline polymer (LCP). Each dispersed phase (LCP or rPET) was melt blended with high density polyethylene (PE) by using extrusion process. The rheological behavior, morphology, and the thermal stability of LCP/PE and rPET/PE blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of LCP or rPET into PE significantly improved the processability. A potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as‐extruded strand. Although the viscosity ratio of the rPET/PE system was lower than that of the LCP/PE blend system, most rPET domains appeared as small droplets. An addition of LCP and rPET into the PE matrix improved the thermal resistance significantly in air but not in nitrogen. The obtained results suggested the high potential of rPET as a processing aid and good thermally resistant material similar to LCP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Huang FC  Chen YF  Lee GB 《Electrophoresis》2007,28(7):1130-1137
This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.  相似文献   

7.
Natural products are normally obtained by organic solvent extraction and many subsequent chromatographic separations. Compounds of interest are often isolated with very low yield and limited purity. An aqueous two-phase extraction process combined with a simple ethanol treatment, for removing excess inorganic salt, has been developed for preparation of geniposide from gardenia. The system was comprised of PE62, a random copolymer composed of 20% ethylene oxide and 80% propylene oxide, KH2PO4 and ethanol. To find optimal conditions, the partition behavior of geniposide under an aqueous two-phase system was investigated. Various factors were considered, including the concentration of salt, the concentration of polymer, the sample loading, and the addition of ethanol. The experimental results demonstrated that increasing salt concentration or decreasing PE62 concentration results in enhancement of the geniposide partition in the salt-rich phase. The addition of ethanol and higher sample loading also promoted the partition efficiency of geniposide. Based on this study, an optimized system containing 5% PE62, 7.5% KH2PO4, and 10% ethanol was tested on a large-scale extraction. A 39.0-g aliquot of final product (in powder form) with 77% purity of geniposide can be effectively extracted from 500 g of gardenia fruit. This process is proved to be useful for industrial application of geniposide preparation.  相似文献   

8.
This study investigated the testicular changes in the rat induced by the nonspecific phosphodiesterase inhibitor, theophylline using magnetic resonance microscopy (MRM) and ubiquitin immunostaining techniques. In vivo T1- and T2-weighted images were acquired at 2 T under anesthesia. Increased signal observed in the theophylline-treated rats suggests that leakage of MRM contrast was occurring. In vivo MRM results indicate that day 16 testis displayed an increased T1-weighted water signal in the area of the seminiferous tubule that decreased by day 32. These findings were validated by histopathology, suggesting that in vivo MRM has the sensitivity to predict changes in testis and epididymal tissues. The participation of the ubiquitin system was investigated, using probes for various markers of the ubiquitin-proteasome pathway. MRM can be used to detect subtle changes in the vascular perfusion of organ systems, and the up-regulation/mobilization of ubiquitin-proteasome pathway may be one of the mechanisms used in theophylline-treated epididymis to remove damaged cells before storage in the cauda epididymis. The combined use of in vivo MRM and subsequent tissue or seminal analysis for the presence of ubiquitin in longitudinal studies may become an important biomarker for assessing testis toxicities drug studies.  相似文献   

9.
Polystyrene (PS) and polyethylene (PE) are two major components of household plastic waste whose blends are immiscible. Recycling them together is an attractive option that requires a compatibilization process to improve the blend mechanical properties. If a PE/PS copolymer is added or formed in situ, it may act as compatibilizer. The structure and molecular properties of this copolymer are key factors to assure its effectivity as a compatibilizer. In this work, we study the graft copolymerization reaction between polystyrene and polyethylene using the catalytic system composed of AlCl3 and styrene. We develop a model of this process which considers that PE/PS grafting and PS degradation occur simultaneously. We propose a kinetic mechanism for the whole process and apply the method of moments to solve the mass balance equations. The model is able to calculate average molecular weights as well as the amount of grafted PS. It accurately describes the available experimental data, constituting a valuable tool for simulation and optimization purposes.  相似文献   

10.
While biofilms are ubiquitous in nature, the mechanism by which they form is still poorly understood. This study investigated the process by which bacteria deposit and, shortly after, attach irreversibly to surfaces by reorienting to create a stronger interaction, which leads to biofilm formation. A model for attachment of Pseudomonas aeruginosa was developed using a quartz crystal microbalance with dissipation monitoring (QCM-D) technology, along with a fluorescent microscope and camera to monitor kinetics of adherence of the cells over time. In this model, the interaction differs depending on the force that dominates between the viscous, inertial, and elastic loads. P. aeruginosa, grown to the midexponential growth phase (hydrophilic) and stationary phase (hydrophobic) and two different surfaces, silica (SiO(2)) and polyvinylidene fluoride (PVDF), which are hydrophilic and hydrophobic, respectively, were used to test the model. The bacteria deposited on both of the sensor surfaces, though on the silica surface the cells reached a steady state where there was no net increase in deposition of bacteria, while the quantity of cells depositing on the PVDF surface continued to increase until the end of the experiments. The change in frequency and dissipation per cell were both positive for each overtone (n), except when the cells and surface are both hydrophilic. In the model three factors, specifically, viscous, inertial, and elastic loads, contribute to the change in frequency and dissipation at each overtone when a cell deposits on a sensor. On the basis of the model, hydrophobic cells were shown to form an elastic connection to either surface, with an increase of elasticity at higher overtones. At lower overtones, hydrophilic cells depositing on the hydrophobic surface were shown to also be elastic, but as the overtone increases the connection between the cells and sensor becomes more viscoelastic. In the case of hydrophilic cells interacting with the hydrophilic surface, the connection is viscous at each overtone measured. It could be inferred that the transformation of the viscoelasticity of the cell-surface connection is due to changes in the orientation of the cells to the surface, which allow the bacteria to attach irreversibly and begin biofilm formation.  相似文献   

11.
闫寿科 《高分子科学》2011,29(4):513-519
The crystalline structure and morphology of the PLA crystallized isothermally from the glassy state on highly oriented PE substrates at 130℃were investigated by means of optical microscopy,AFM and X-ray diffraction.The results indicate that the PE substrate influences the crystallization behavior of PLA remarkably,which leads to the growth of PLA crystals on PE substrate always in edge-on form rather than the twisted lamellar crystals from edge-on to flat-on when crystallizing the PLA on glass surface under the same condition.The edge-on PLA lamellae on the PE substrate are preferentially arranged with their long axes in the chain direction of the PE substrate crystals.It is further demonstrated that except for the different crystal orientation,the PE does not influence the crystalline modification and crystallinity of the PLA.  相似文献   

12.
小角X射线散射法研究CH2Cl2,CHCl3和CCl4对PE液晶结构的影响   总被引:1,自引:0,他引:1  
采用小角X射线散射法研究了CH_2Cl_2、CHCl_3和CCl_4对磷脂酰乙醇胺(PE)液晶结构影响的机理.CH_3Cl_2、CHCl_3和CCl_4对PE液晶结构影响的差别主要是其空间旋转电子云密度分布形状不同所致.空间旋转电子云密度分布呈椭球状的物质有使PE液晶形成六角形H_1相的趋向;呈圆锥状的物质有诱发PE液晶形成立方六角相的趋向;呈球状的物质有使PE液晶形成片层立方相的趋向.  相似文献   

13.
Mitochondrion is one of the most important organelles in cells with several vital responsibilities. The consequence of a deficiency in the function of mitochondrion could result with the wide range of diseases and disorders. In this study, we investigated the feasibility of utilizing surface-enhanced Raman scattering (SERS) to understand the mode of interaction of gold nanoparticles (GNPs) with mitochondria. The living lung cancer cells and the isolated mitochondria from these cells were treated with gold colloidal suspension for SERS experiments. The AFM images of the mitochondria confirmed that the treatment did not cause substantial damage to mitochondria. The localization of GNPs in living cells is investigated with confocal microscopy and found that GNPs form aggregates in the cytosol away from the mitochondria. However, SERS spectra obtained from isolated mitochondria and living cells indicate that GNPs escaped from the endosomes or entered into the living cell through another route may be in contact with mitochondria in a living cell. The findings of this study indicate that SERS can be used for mitochondrial research.  相似文献   

14.
rCCK8PE38 is a novel immunotoxin that targets choleystokinin B receptor, which is over‐expressed in some tumor tissues. Although we constructed a prokaryotic expression vector to express rCCK8PE38 in our laboratory, thorough purification was necessary to quantitatively assess its anti‐tumor effect. In this study, we established a purification protocol to obtain rCCK8PE38 with high purity from E. coli. Three different types of chromatography, hydrophobic chromatography, ion exchange chromatography and size exclusion chromatography, were used in combination. The purification technological parameters of each chromatography type were optimized. The whole process of purification was arranged to minimize the purification steps and achieve purity and bioactivity. Finally, through this optimized scheme, we obtained a recombinant protein with a purity of >95%; then, the protein was stored at −80°C after lyophilization. The purified protein was used in a tumor inhibition experiment and was effective in killing tumor cells that over‐expressed choleystokinin B receptor. The results of this study may provide some valuable information about protein purification and lay the foundation for further clinical experiments with rCCK8PE38.  相似文献   

15.
One of the activities of placental extracts (PEs) is skin-whitening effect, but the physiological and genetic mechanism for this effect has not yet been clarified. Here, we focus on PE as a regulator of antioxidant enzyme genes. Porcine PE was prepared, and its activity was investigated in B16 melanoma cells. PE treatment decreased the melanin content of UV-irradiated B16 cells in a dose-dependent manner. PE directly reduced the enzyme activity of tyrosinase in a cell-free assay. In addition, PE treatment increased the gene expression of cytosolic superoxide dismutase (SOD-1), extracellular SOD (SOD-3) and catalase but did not affect the expression of tyrosinase. Moreover, PE protected the B16 cells from H2O2-induced cell death. Taken together, our data suggest that PEs could play a role not only as a suppressor of melanin synthesis but also as a regulator of antioxidant genes and might protect the skin against oxidative stress.  相似文献   

16.
The dual-curable adhesive used to attach thin film transistors (TFTs) to color filters in the construction process of liquid crystal display (LCD) panels requires fast curing by UV irradiation and strong bond strength after thermal-curing. In addition, it is necessary to consider the immiscibility of the dual-curable adhesives with the liquid crystal, because they come directly into contact with the liquid crystal without curing process in the large LCD panel production. In this study, dual-curable adhesives based on partially acrylated epoxy acrylate oligomers were prepared and investigated with nematic liquid crystals using gas chromatography (GC), polarized optical microscopy and the measurement of the transmittance of the liquid crystal.As the concentration of CC bonds was increased, the immiscibility was enhanced due to the fast curing rate of the partially acrylated epoxy acrylate oligomers and reduced visual contamination was observed in the polarized optical microscope images. Moreover, the transmittance of the liquid crystal cells was not changed before and after the dual-curing of the adhesives and was maintained for 100 h.  相似文献   

17.
The Cr/SiO2 Phillips catalyst has taken a central role in ethylene polymerization since its invention in 1953. The uniqueness of this catalyst is related to its ability to produce broad molecular weight distribution (MWD) PE materials as well as that no co-catalysts are required to attain activity. Nonetheless, co-catalysts in the form of metal-alkyls can be added for scavenging poisons, enhancing catalyst activity, reducing the induction period, and tailoring polymer characteristics. The activation mechanism and related polymerization mechanism remain elusive, despite extensive industrial and academic research. Here, we show that by varying the type and amount of metal-alkyl co-catalyst, we can tailor polymer properties around a single Cr/SiO2 Phillips catalyst formulation. Furthermore, we show that these different polymer properties exist in the early stages of polymerization. We have used conventional polymer characterization techniques, such as size exclusion chromatography (SEC) and 13C NMR, for studying the metal-alkyl co-catalyst effect on short-chain branching (SCB), long-chain branching (LCB) and molecular weight distribution (MWD) at the bulk scale. In addition, scanning transmission X-ray microscopy (STXM) was used as a synchrotron technique to study the PE formation in the early stages: allowing us to investigate the produced type of early-stage PE within one particle cross-section with high energy resolution and nanometer scale spatial resolution.  相似文献   

18.
In this paper we describe a microfluidic environment that enables us to explore cell-to-cell signalling between longitudinally linked primary heart cells. We have chosen to use pairs (or doublets) of cardiac myocyte as a model system, not only because of the importance of cell-cell signalling in the study of heart disease but also because the single cardiomyocytes are both mechanically and electrically active and their synchronous activation due to the intercellular coupling within the doublet can be readily monitored on optical and electrical recordings. Such doublets have specialised intercellular contact structures in the form of the intercalated discs, comprising the adhesive junction (fascia adherens and macula adherens or desmosome) and the connecting junction (known as gap junction). The latter structure enables adjacent heart cells to share ions, second messengers and small metabolites (<1 kDa) between them and thus provides the structural basis for the synchronous (syncytical) behaviour of connected cardiomyocytes. Using the unique environment provided by the microfluidic system, described in this paper, we explore the local ionic conditions that enable the propagation of Ca(2+) waves between two heart cells. We observe that the ability of intracellular Ca(2+) waves to traverse the intercalated discs is dependent on the relative concentrations of diastolic Ca(2+) in the two adjacent cells. These experiments rely upon our ability to independently control both the electrical stimulation of each of the cells (using integrated microelectrodes) and to rapidly change (or switch) the local concentrations of ions and drugs in the extracellular buffer within the microfluidic channel (using a nanopipetting system). Using this platform, it is also possible to make simultaneous optical recordings (including fluorescence and cell contraction) to explore the effect of drugs on one or both cells, within the doublet.  相似文献   

19.
Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization–Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.  相似文献   

20.
By means of the molecular dynamics simulation method, the miscibility of poly(3-hydroxybutyrate)/polyethylene (PHB/PE) blend has been investigated. Two glass transition temperatures of the PHB/PE are found by scrutinizing its volume-temperature curve, and this result is qualitatively in agreement with the experimental results. To further analyze the miscibility of poly(3-hydroxybutyrate)-based blends, the Flory-Huggins parameters of PHB/PE, poly(3-hydroxybutyrate)/poly(ethylene oxide) (PHB/PEO), poly(ethylene oxide)/polyethylene (PEO/PE) have been calculated via a Monte Carlo scheme, and the morphology of the PHB/PEO and the PHB/PE blend has been simulated using dissipative particle dynamics method. The time evolution of dividing interface for PHB/PEO/PE blend shows a dynamic phase separation process. All these results indicate that PHB and PEO tend to mix together, whereas PE aggregates to form PE-rich domains in the PHB/PE and PHB/PEO/PE blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号