首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The binding of Mg(II), Ca(II), Zn(II), Cu(II) and Fe(III) to ETDA-washed Sepia melanin is quantified by inductively coupled plasma mass spectrometry. By monitoring the solution pH change associated with metal uptake, it is concluded that Mg(II), Ca(II) and Zn(II) bind to carboxylic acid groups in melanin, Cu(II) binds to hydroxyl (OH) groups and Fe(III) binds to OH or amine groups. The aerobic reactivity of melanins with different metal contents is analyzed by examining their ability to cause strand breaks in supercoiled pUC18 DNA. Cu(II)- and Fe(III)-enriched melanins induce the most damage. Hydroxyl radical, *OH, is proposed to be one of the reactive oxygen species responsible.  相似文献   

2.
Benzene has been used as a probe to determine the photogeneration of ·OH radicals in aqueous solutions containing Fe(III) and tartrate (Tar) when they are irradiated (λ?≥?313?nm, 250?W). Products were determined by HPLC. Results show that tartrate has a positive effect on the photogeneration of ·OH. The influence of pH, temperature, and concentrations of Fe(III) and Tar were systematically investigated. Production of ·OH radicals was greatest at pH 3.0. Concentrations of ·OH increased with increasing Fe(III) and tartrate concentrations, but at a certain ratio they decreased. The quantum yield of ·OH radicals at 328?K was nearly twice that at 298?K.  相似文献   

3.

The photodegradation of the pesticide asulam (methyl[(4-aminophenyl)sulfonyl]carbamate) in aqueous solutions (1.0 2 10 m 4 mol L m 1 = 23 mg L m 1 ) has been investigated with and without Fe(III). The asulam disappearance were measured by direct photolysis at 254 nm as a function of pH and oxygen concentration. Different photoproducts have been identified, among them a blue condensation product which was only observed upon selective direct excitation of asulam. In the presence of Fe(III) and by excitation at 365 nm, we obtained the complete mineralisation of asulam, while no complete transformation of organic carbons into CO 2 was observed by direct photolysis. The continuous formation of ” OH radicals generated from the excitation of Fe(III) species allowed the total mineralisation of asulam. Information is also given about the fate of asulam in aqueous solutions under solar irradiation.  相似文献   

4.
Reaction of alpha-P(2)W(15)O(56)(12-) and Fe(III) in a saturated NaCl solution produces a trisubstituted Wells-Dawson structure with three low-valent metals, alpha-(Fe(III)Cl)(2)(Fe(III)OH(2))P(2)W(15)O(59)(11-) (1). Dissolution of this species into 1 M NaBr (Br(-) is non-coordinating) gives the triaquated species alpha-(Fe(III)OH(2))(3)P(2)W(15)O(59)(9-) (2). Ionic strength values of 1 M or greater are necessary to avoid decomposition of 1 or 2 to the conventional sandwich-type complex, alpha beta beta alpha-(Fe(III)OH(2))(2)Fe(III)(2)(P(2)W(15)O(56))(2)(12-) (3). If the pH is greater than 5, a new triferric sandwich, alpha alpha beta alpha-(NaOH(2))(Fe(III)OH(2))Fe(III)(2)(P(2)W(15)O(56))(2)(14-) (4), forms rather than 3. Like the previously reported Wells-Dawson-derived sandwich-type structures with three metals in the central unit ([TM(II)Fe(III)(2)(P(2)W(15)O(56))(P(2)TM(II)(2)W(13)O(52))],(16-) TM = Cu, Co), this complex has a central alpha-junction and a central beta-junction. Thermal studies suggest that 4 is more stable than 3 over a wide range of temperatures and pH values. The intrinsic Jahn-Teller distortion of d-electron-containing metal ions incorporated into the external sites of the central multi-metal unit impacts the stoichiometry of their incorporation (with a consequent change in the inter-POM-unit connectivity, where POM = polyoxometalate). Reaction of non-distorting Ni(II) with the diferric lacunary sandwich-type POM alpha alpha alpha alpha-(NaOH(2))(2)Fe(III)(2)(P(2)W(15)O(56))(2)(16-) (5) produces alpha beta beta alpha-(Ni(II)OH(2))(2)Fe(III)(2)(P(2)W(15)O(56))(2)(14-) (6), a Wells-Dawson sandwich-type structure with two Ni(II) and two Fe(III) in the central unit. All structures are characterized by (31)P NMR, IR, UV-vis, magnetic susceptibility, and X-ray crystallography. Complexes 4 and 6 are highly selective and effective catalysts for the H(2)O(2)-based epoxidation of alkenes.  相似文献   

5.
The reaction of *OH with 2'-deoxyguanosine yields two transient species, both identified as OH adducts (G*-OH), with strongly different reactivity towards O2, or other oxidants, or to reductants. One of these, identified as the OH adduct at the C-8 position (yield 17% relative to *OH), reacts with oxygen with k=4 x 10(9)M(-1)s(-1); in the absence of oxygen it undergoes a rapid ring-opening reaction (k = 2 x 10(5) s(-1) at pH4-9), visible as an increase of absorbance at 300-310 nm. This OH adduct and its ring-opened successor are one-electron reductants towards, for example, methylviologen or [Fe(III)(CN)6]3-. The second adduct, identified as the OH adduct at the 4-position (yield of 60-70% relative to *OH), has oxidizing properties (towards N,N,N',N'-tetra-methyl-p-phenylenediamine, promethazine, or [Fe(II)(CN)6]4-). This OH adduct undergoes a slower transformation reaction (k = 6 x 10(3) s(-1) in neutral, unbuffered solution) to produce the even more strongly oxidizing (deprotonated, depending on pH) 2'-deoxyguanosine radical cation, and it practically does not react with oxygen (k< or = 10(6)M(-1)s(-1)). The (deprotonated) radical cation, in dilute aqueous solution, does not give rise to 8-oxoguanosine as a product. However, it is able to react with ribose with k< or =4 x 10(3)M(-1)S(-1).  相似文献   

6.
Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid (3,5-PDCA) and nicotinic acid (NA) were studied at appropriate pHs in aqueous solutions by pulse radiolysis technique. At pH 1, CH(3)C*HOH and *CH(2)OH radicals were found to react with 3,5-PDCA by rate constants of 2.2 x 10(9) and 5.1 x 10(8) dm(3) mol(-1) s(-1), respectively, giving radical adduct species. The adduct species formed in the reaction of CH(3)C*HOH radicals with 3,5-PDCA underwent unimolecular decay (k = 9.8 x 10(4) s(-1)) giving pyridinyl radicals. Reaction of (CH(3))(2)C*OH, CH(3)C*HOH, and *CH(2)OH radicals with NA at pH 3.3 gave the adduct species which subsequently decayed to the pyridinyl radicals. At pH 1, wherein NA is present in the protonated form, (CH(3))(2)C*OH radicals directly transfer electrons to NA, whereas CH(3)C*HOH and *CH(2)OH radicals react with higher rate constants compared with those at pH 3.3, initially giving the adduct species which subsequently undergo elimination reaction giving pyridinyl radicals. Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid are found to proceed by an addition-elimination pathway that provides one of the few examples of organic inner sphere electron-transfer reactions. Rate constant for the addition reaction as well as rate of elimination varies with the reduction potential of alpha-hydroxyalkyl radicals.  相似文献   

7.
孙杰  陈果仓  曾沛  张晗 《化学通报》2014,77(8):814-818
研究了在紫外光(UV)照射下,Fe(Ⅲ)-富马酸盐体系对p-硝基苯酚(PNP)的光降解反应,考察了溶液pH、Fe(Ⅲ)、富马酸盐和PNP的初始浓度对PNP降解率的影响。结果表明,UV/Fe(Ⅲ)-富马酸盐体系对PNP有光降解作用,相比于只含Fe(Ⅲ)或者富马酸盐体系,同时加入Fe(Ⅲ)与富马酸盐构成的体系在降解PNP方面有协同作用。在pH 3.0~6.0范围内,PNP的降解率随着pH和PNP初始浓度的增大而降低,而随着Fe(Ⅲ)和富马酸盐的初始浓度的增大而增大。氯仿猝灭法证实,该体系在降解PNP反应过程中产生了超氧负离子自由基;采用荧光法和异丙醇猝灭法证实了该体系在反应过程中产生了羟基自由基,同时证实了羟基自由基为PNP光降解反应的主要反应物质。  相似文献   

8.
A membrane filtration method was examined concerning the effective collection of iron(III) from a homogeneous aqueous solution with Chromazurol B (CAB), one of the triphenylmethane dyes, as a precipitating reagent in the presence of a non-ionic surfactant, polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl]ether (Triton X-100). A formed blue Fe(III)-CAB complex was collected as a precipitate on a membrane filter by filtration under suction from a homogeneous aqueous solution in the pH range over about 2. The original solution was prepared at a concentration ratio of CAB to Fe(III) of to 10, and that of Triton X-100 to CAB of 10 to 100. It was then adjusted to a pH value of between 1.0 and 6.5. A linear relationship (r = 0.999) was obtained between the initial concentration and the found one of Fe(III) in the range of 2.0 x 10(-5) to 4.0 x 10(-4) mol dm(-3) at a fixed concentration ratio of CAB to Fe(III) of 3 and that of Triton X-100 to CAB of 20. This membrane filtration with CAB and Triton X-100 may be utilized for the separation of Fe(III) as a background species.  相似文献   

9.
The demetalation process of 10 multi-iron Wells-Dawson polyoxometalates is studied by cyclic voltammetry and controlled potential coulometry. Eight sandwich-type complexes (alphaalphaalphaalpha-Na(16)[(NaOH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)], alphaalphabetaalpha-Na(14)[(NaOH(2))(Fe(III)OH(2))(Fe(III))(2)(X(2)W(15)O(56))(2)], alphabetabetaalpha-Na(12)[(Fe(III)OH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)], and alphabetabetaalpha-Na(14)[(Mn(II)OH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)] (where X = P(V) or As(V))) and two monomeric complexes (alpha-Na(11)[(P(2)(Fe(III)Cl)(2)(Fe(III)OH(2))W(15)O(59))] and alpha-Na(11)[(As(2)(Fe(III)Cl)(2)Fe(III)OH(2))W(15)O(59))]) were selected for this study. All 10 complexes show Fe(III) waves which are well-separated from the redox activity of the W(VI) centers. At room temperature and under mild conditions, iron release from the complexes is observed upon reduction of the Fe(III) centers. This release is controlled by the ionic strength of the medium, the nature and concentration of the anions present in the supporting electrolyte, and by the pH of the solution. This behavior parallels those described for most siderophores which depend on the same parameters.  相似文献   

10.
The photodegradation of carbofuran by excitation of iron(III) aquacomplexes was investigated under UV irradiation. The degradation rate was strongly influenced by the pH, and initial concentration of Fe(III). The degradation efficiency of carbofuran at the difference pH was in good agreement with the initial concentration of Fe(OH)2+ in the solution. An initial carbofuran concentration of 10 mg L−1 was completely degraded within 50 min at pH 2.8 with original Fe(III) concentration of 8 × 10−4 mol L−1. This degradation reaction was found to follow the first order kinetics law and the rate constant of 1.60 × 10−3 s−1 was observed. The decrease of TOC content was observed during the photocatalytic process and the removal percentage obtained was about 70% after 25 h. Furthermore, ammonium ion as an end-product was detected in the solution. Therefore, this process based on the catalytic reaction of Fe(II, III) is responsible for the continuous production of hydroxyl radicals in such system. A gas chromatography-mass spectrometry analysis showed the formation of four photoproducts, such as 2,2-dimethyl-2,3-dihydro-benzofuran-7-ol, etc., revealing that the carbamate branch, C-3 and C-2 positions in furan ring were attack targets of hydroxyl radicals. Based on these results, the photocatalytic system could be useful technology for the treatment and the mineralization of compounds like carbofuran.  相似文献   

11.
The photochemical and biological reduction of Hg(II) in the presence of algae, anabaena cylindrical, was investigated under the irradiation of metal halide lamps placed in cooling trap for maintaining constant temperature by water circulation (lambda >or=365 nm, 250 W). The photoreduction rate of Hg(II) increased with increasing algae concentration. The addition of Fe(III) and humic substances into the suspensions of algae also enhanced the photoreduction of Hg(II). Alteration of pH value affected the photoreduction of Hg(II) in aqueous solution with or without the addition of algae. The concentration of dissolved gaseous mercury (DGM), the reduced product of Hg(II), increased with increasing exposure time and then gradually approached to a steady state. The influence of initial Hg(II) concentration on the photoreduction of Hg(II) with algae was studied by irradiating the suspensions of anabaena cylindrical at pH 7.0 with initial concentrations (C(0)) of Hg(II) at 50, 100, 120, 150 and 180 microg L(-1), respectively, the light-induced reduction of Hg(II) followed the apparent pseudo first-order kinetics. The initial photoreduction rate could be expressed by the equation: r(A)=0.0871+0.00129 C(0), with a correlation coefficient R=0.9994. The overall mercury mass balance study on the photo-reductive process revealed that more than 39.86% of Hg(II) from the algal suspension was reduced to volatile metallic mercury.  相似文献   

12.
Hydroxyl radicals ((·)OH) have been deemed to be the major active species during the photocatalytic oxidation reaction. In this study, (·)OH produced on various semiconductor photocatalysts in aqueous solution under Xenon lamp irradiation was quantitatively investigated by the photoluminescence (PL) technique using coumarin (COU) as a probe molecule. The results indicated that the formation rate of (·)OH on the surface of irradiated commercial Degussa P25 (P25) was much higher than that of other semiconductor. The pH values of the solution and phase structure of TiO(2) significantly influenced the production rate of (·)OH. The acidic pH environment of the solutions and bi-phase structure (anatase and rutile) of TiO(2) were beneficial to enhancing the formation rate of (·)OH. In addition, the formation rate of (·)OH on anatase TiO(2) and P25 was much faster than that of (·)OH on the other semiconductors (such as rutile TiO(2), ZnO, WO(3), CdS, Bi(2)WO(4) and BiOCl, etc.). A new concept "OH-index" was first proposed to compare photocatalytic activity of photocatalysts, which would provide new insight into the investigation of semiconductor photocatalysts.  相似文献   

13.
Wheely: For the first time and very unexpectedly, a rupture of the very stable {P(8)W(48)} wheel was observed in aqueous solution at pH?4 and 80?°C in the presence of Fe(III), Eu(III)/Gd(III), and H(2)O(2). This inorganic ring opening is unprecedented in polyoxometalate chemistry.  相似文献   

14.
The carboxyl radical anion, CO2*- was produced by the reactions of OH radicals with either CO or formic acid in aqueous solution. The pKa(*CO2H) was determined by pulse radiolysis with conductometric detection at pH approximately equals 2.3. The bimolecular decay rate constant of CO2*- (2k approximately equals 1.4 x 10(9) dm3mol(-1)s(-1)) was found to be independent of pH in the range 3-8 at constant ionic strength. The yields of the products of the bimolecular decay of the carboxyl radicals, CO2 and the oxalate anion were found to depend strongly on the pH of the solution with an inflection point at pH 3.8. This pH dependence is explained by assuming a head-to-tail recombination of the CO2*- radicals followed by either rearrangement to oxalate or a protonation of the adduct, which subsequently leads to the formation of CO2 and formate. The recombination of CO2*- to give oxalate directly is estimated to have a contribution of <25%.  相似文献   

15.
Summary The extraction of iron(III) from aqueous HCl, H2SO4, HClO4, HNO3 solutions by 2-carbethoxy-5-hydroxy-1-(4-tolyl)-4-pyridone (HA) dissolved in CHCl3 has been studied. Quantitative extraction of iron(III) is achieved if the concentration of the acids does not exceed 1N. The composition of the iron (III)—HA complex formed in the organic phase was investigated spectrophotometrically, radiometrically and by analysis of the isolated species. In the aqueous phase iron (III) and HA form three different complexes, depending on the initial iron: HA concentration ratio and the pH of the solution. They are the violet FeA2+, the orange-red FeA2 + and the orange-yellow FeA3. The latter is identical with the complex found in the organic phase, which was isolated as a solid crystalline material and characterized by elemental analysis and infrared spectroscopy. A spectrophotometric method for the determination of iron(III) in the aqueous phase and in the chloroform solution, by extraction with HA, is described.
Zusammenfassung Die Extraktion von Fe(III) aus wäßrigen Lösungen von HCl, H2SO4, HClO4 oder HNO3 mit 2-Carbäthoxy-5-hydroxy-1-(4-tolyl)-4-pyridon (HA) in chloroformischer Lösung wurde untersucht. Sie verläuft quantitativ, wenn die Konzentration der Säure nicht größer ist als 1-n. Die Zusammensetzung des Fe(III)-HA-Komplexes in der organischen Phase wurde spektrophotometrisch, radiometrisch und durch Analyse der isolierten Substanz untersucht. In wäßrigem Milieu bilden Eisen(III) und HA drei verschiedene Komplexe je nach dem anfänglichen Konzentrationsverhältnis Fe(III): HA und je nach dem pH der Lösung. FeA2+ ist violett, FeA2 + ist orange-rot und FeA3 orangegelb. Diese Verbindung ist mit dem in der organischen Phase gefundenen Komplex identisch, der in kristallisierter Form isoliert und durch Elementaranalyse und IR-Spektrometrie charakterisiert wurde. Eine spektrophotometrische Methode zur Eisen(III)-Bestimmung in wäßriger Phase und in chloroformischer Lösung durch Extraktion mit HA wurde beschrieben.
  相似文献   

16.
Reactions of chlorine radicals might play a role in aqueous aerosols where a core of inorganic components containing insulators such as SiO2 and dissolved HUmic-LIke Substances (HULIS) are present. Herein, we report conventional flash photolysis experiments performed to investigate the aqueous phase reactions of silica nanoparticles (NP) and humic acid (HA) with chlorine atoms, Cl*, and dichloride radical anions, Cl2*-. Silica NP and HA may be taken as rough models for the inorganic core and HULIS contained in atmospheric particles, respectively. Both Cl* and Cl2*- were observed to react with the deprotonated silanols on the NP surface with reaction rate constants, k +/- sigma, of (9 +/- 6) x 10(7) M(-1) s(-1) and (7 +/- 4) x 10(5) M(-1) s(-1), respectively. The reaction of Cl* with the surface deprotonated silanols leads to the formation of SiO* defects. HA are also observed to react with Cl* and Cl2*- radicals, with reaction rate constants at pH 4 of (3 +/- 2) x 10(10) M(-1) s(-1) and (1.2 +/- 0.3) x 10(9) M(-1) s(-1), respectively. The high values observed for these constants were discussed in terms of the multifunctional heterogeneous mixture of organic molecules conforming HA.  相似文献   

17.
Reaction of one-electron oxidant (Br(2)(*-)) with tryptophol (TP) and 5-hydroxytryptophol (HTP) have been studied in aqueous solution in the pH range from 3 to 10, employing nanosecond pulse radiolysis technique and the transients detected by kinetic spectrophotometry. One-electron oxidation of TP has produced an indolyl radical that absorbs in the 300-600 nm region with radical pK(a) = 4.9 +/- 0.2, while the reaction with HTP has produced an indoloxyl radical with lambda(max) at 420 nm and radical pK(a) < 3. Hydroxyl radicals ((*)OH) react with these two compounds producing (*)OH radical adducts that undergo water elimination to give one-electron-oxidized indolyl and indoloxyl radical species, respectively. The indoloxyl radicals react with the parent compound to form dimer radicals with an average association constant of (6.7 +/- 0.4) x 10(4) M(-1). No such dimerization is observed with indolyl radical, indicating that the presence of the 5-hydroxy group markedly alters its ability to form a dimer. A possible explanation behind such a difference in reactivity has been supported with ab initio quantum chemical calculations.  相似文献   

18.
The photolysis of Fe(III)-pyruvate and Fe(III)-citrate complexes in water produces hydroxyl radicals in the presence of dissolved oxygen, and can promote the oxidation of organic compounds. The photodegradation of glyphosate with Fe(III)-pyruvate and Fe(III)-citrate complexes was investigated under irradiation at λ?≥?365?nm. The effect of initial concentration of glyphosate, the initial pH value, and the Fe(III)/carboxylate ratio were examined. Upon irradiation of glyphosate aqueous solution with the complexes in the acidic range of natural waters, the bioavailable orthophosphate could be released from degradation of glyphosate. The amount of orthophosphate increased with increasing Fe(III)/carboxylate ratio.  相似文献   

19.
The dark reduction kinetics of micromolar concentrations of Fe(III) in aqueous solution were studied in the presence of millimolar concentrations of ferrozine (FZ) over the pH range 4.0–7.0. A pseudo-first-order kinetics model was used to describe Fe(III) reduction at pH 4.0 and 5.0, and the reduction rate decreased with increasing pH or initial Fe(III) concentration. A more molecular-based kinetics model was developed to describe Fe(III) reduction at pH 6.0 and 7.0. From this model, the intrinsic rate constants (k1) of Fe(III) reduction by FZ in the dark were obtained as 0.133 ± 0.004 M?1 s?1 at pH 6.0 and 0.101 ± 0.009 M?1 s?1 at pH 7.0. It was also found in this model that a higher pH, a higher concentration of Fe(III), a lower concentration of FZ and less incubation time led to a lower fraction of Fe(III) reduction by FZ in the dark.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号