首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nafion涂层固相微萃取探头的制备   总被引:6,自引:2,他引:4  
采用Nafion作为固相涂层在不锈钢丝上涂制了固相微萃取 (SPME)探头 ,研究了它的特性 ,并与类似商品探头作了比较。该探头具有萃取量大、可比商品探头 (SPME)的富集率高 1个数量级 ,灵敏度高、寿命长、且不易折断等特性。由于Nafion有很强的极性 ,因此它对极性化合物有很强的萃取能力 ,适合萃取醇等物质。用该探头测定了醇类物质 ,检出限达 2 0~ 60ng·ml-1,相对标准偏差RSD <5 %。  相似文献   

2.
对自制的固相微萃取(SPME)活性炭(AC)涂层萃取头进行了评价。该涂层富集能力强,对苯系物(BTEX)的富集率达到14.5~19.2倍;热稳定性好,最高使用温度可达290℃;使用寿命长,260℃解吸条件下可反复使用140次以上。其与聚二甲基硅氧烷(PDMS)涂层相比,尽管萃取量略小,但其具有更高精密度和准确度,而且其萃取和解吸平衡时间减少为聚二甲基硅氧烷(PDMS)涂层的一半以上。应用AC涂层SPME法和液-液萃取(LLE)法对松花江水进行了气相色谱-质谱(GC-MS)定性比较分析。两种方法分别检测到50种(主要是挥发和半挥发性的弱极性和非极性)和44种(主要是挥发性差、与正己烷相容性较强)化合物。  相似文献   

3.
利用合成的有机硅树脂胶粘剂和活性炭微粉首次制成活性涂层萃取头。通过苯系物(BTEX)表征了涂层表观结构、厚度及萃取性能。对苯、甲苯、乙苯、对二甲苯、邻二甲苯等进行固相微萃取,结果表明:该萃取头热稳定性好,最高使用温度可达290℃;使用寿命长,250℃解吸条件下反复使用140余次以后,膜层没有脱落或性能下降的现象。该涂层对苯系物的最低检出质量浓度在0 21~0 94μg L之间。与100μm的商品聚二甲基硅氧烷(PDMS)涂层相比,对苯系物的富集能力整体上相当。  相似文献   

4.
王树涛  王炎  尤宏  梁志华 《色谱》2004,22(5):547-550
利用自制的有机硅树脂胶粘剂和粉状活性炭制成活性炭涂层萃取头。该萃取头富集能力强,对氯仿、四氯化碳、三氯乙烯、四氯乙烯4种卤代烃化合物的富集率达到13.8~18.7倍;热稳定性好,最高使用温度可达290 ℃;使用寿命长,250 ℃解吸条件下可反复使用140次以上。上述4种化物固相微萃取-气相色谱分析的结果表明,方法的最低检出质量浓度为0.008~0.05 μg/L。采用该萃取头对含有该4种卤代烃化合物的实际水样进行了SPME-GC分析,4种化合物的回收率为95.5%~104.6%。  相似文献   

5.
固相微萃取中高分子涂层的研究   总被引:34,自引:0,他引:34  
张道宁  吴采樱  艾飞 《色谱》1999,17(1):10-13
聚甲基乙烯基硅氧烷首次被用作固相微萃取(SPME)装置的固相涂层,通过顶空固相微萃取气相色谱分析(HS-SPME-GC)对使用聚甲基乙烯基硅氧烷固相涂层的SPME装置进行了评价。对其使用厚度、温度及选择性进行了较深入的研究,找到了它的最佳使用条件和适用范围,并与商品化的SPME涂层作了比较。对HS-SPME-GC和HS-GC两种方法也作了比较,指出两者的适用范围不同。  相似文献   

6.
活性炭固相微萃取-气相色谱联用测定海水中酞酸酯   总被引:2,自引:0,他引:2  
利用自制的活性炭纤维结合固相微萃取-气相色谱联用技术(ACF-SPME-GC)分析了海水中4种邻苯二甲酸酯.对萃取温度、离子强度、吸附和热解吸时间等影响因素进行了研究.结果表明,在盐浓度为15%和萃取温度为60 ℃条件下萃取60 min,效果最好.在最优化条件下,本方法的线性范围为0.1~1000 μg/L; 检出限为0.01~10 μg/L; 相对标准偏差均小于10%.将ACF-SPME-GC技术用于实际海水样品的分析,未检测出这4种邻苯二甲酸酯化合物.  相似文献   

7.
以N,N-二甲基甲酰胺为溶剂,用3,3′,4,4′-二苯甲酮四羧酸二酐、4,4′-二氨基二苯醚及1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷合成了有机硅改性的聚酰亚胺作为固相微萃取(SPME)中基质(石英纤维)的涂层材料。通过红外光谱法、热重法及扫描电子显微镜对此涂层的结构、热稳定性和表面形貌进行了分析,证明了通过聚合反应将有机硅链段引入到聚酰亚胺结构中可增加链的柔韧性,减少分子链间的极性作用,改善其吸附性能,而且经高温脱水反应使涂层键合在石英纤维表面,使其性质稳定,不易脱落。将有此涂层的SPME应用于气相色谱法测定水中7种苯系物,取得良好的分离效果,7种苯系物测定值的相对标准偏差(n=6)在4.1%~6.0%之间,检出限(3S/N)在0.02~0.11mg·L-1之间,回收率在98.0%~117%之间。  相似文献   

8.
采用m(聚硅氧烷 (OV 1) )∶m (富勒烯聚二甲基硅氧烷 (PSO C60 ) ) =4∶1的混合固定相自制萃取头 ,利用顶空固相微萃取与气相色谱联用技术 (HS SPME GC)分析了水中 5种邻苯二甲酸二酯。考察了萃取温度、离子强度、吸附和热解吸时间等因素对该方法灵敏度的影响。结果表明该萃取头萃取选择性优于商用PDMS萃取头。方法的检出限为 0 331ng/L~ 12 5 μg/L ;除邻苯二甲酸二正壬酯外 ,相对标准偏差均在 12 %以下  相似文献   

9.
固相微萃取气相色谱法测定水相中邻苯二甲酸二酯   总被引:4,自引:0,他引:4  
刘振岭  肖春华  吴采樱  韩惠敏 《色谱》2000,18(6):568-570
 采用m(聚硅氧烷 (OV 1) )∶m (富勒烯聚二甲基硅氧烷 (PSO C60 ) ) =4∶1的混合固定相自制萃取头 ,利用顶空固相微萃取与气相色谱联用技术 (HS SPME GC)分析了水中 5种邻苯二甲酸二酯。考察了萃取温度、离子强度、吸附和热解吸时间等因素对该方法灵敏度的影响。结果表明该萃取头萃取选择性优于商用PDMS萃取头。方法的检出限为 0 331ng/L~ 12 5 μg/L ;除邻苯二甲酸二正壬酯外 ,相对标准偏差均在 12 %以下。  相似文献   

10.
活性炭纤维固相微萃取方法分析酱油中的苯甲酸   总被引:5,自引:0,他引:5  
1 引 言 苯甲酸(苯甲酸钠)是食品。饮料中常用传统防腐剂之一,过量的使用会对人体造成危害。因此对食品中的苯甲酸含量进行快速而方便的检测是非常重要的一项工作。食品中苯甲酸含量的分析方法最主要的是乙醚提取气相色谱法(国标法)。张卉、吕湘等还在国标法的基础上对其进行了改进。固相微萃取(SPME)是90代发展起来的一种无溶剂、快速、简便、灵敏的新型样品前处理方法。萃取装置使用涂有色谱固定相或吸附剂的熔融石英丝,外套不锈钢管加以保护,形状象一支色谱进样器,可方便地与气相色谱-质谱、液相色谱等联用。目前,这…  相似文献   

11.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

12.
Chen L  Chen W  Ma C  Du D  Chen X 《Talanta》2011,84(1):104-108
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes/polypyrrole (MWCNTs/Ppy) was prepared with an electrochemical method and used for the extraction of pyrethroids in natural water samples. The results showed that the MWCNTs/Ppy coated fiber had high organic stability, and remarkable acid and alkali resistance. In addition, the MWCNTs/Ppy coated fiber was more effective and superior to commercial PDMS and PDMS/DVD fibers in extracting pyrethroids in natural water samples. Under optimized conditions, the calibration curves were found to be linear from 0.001 to 10 μg mL−1 for five of the six pyrethroids studied, the exception being fenvalerate (which was from 0.005 to 10 μg mL−1), and detection limits were within the range 0.12-0.43 ng mL−1. The recoveries of the pyrethroids spiked in water samples at 10 ng mL−1 ranged from 83 to 112%.  相似文献   

13.
Feng J  Sun M  Liu H  Li J  Liu X  Jiang S 《Journal of chromatography. A》2010,1217(52):8079-8086
A novel solid-phase microextraction fiber based on a stainless steel wire coated with Au nanoparticles was prepared and has been applied, coupled with gas chromatography, to the extraction of aromatic hydrophobic organic chemical pollutants in rainwater and soil extract. The solid-phase microextraction fiber exhibited excellent extraction efficiency and selectivity. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized. Single fiber repeatability and fiber-to-fiber reproducibility were less than 7.90% and 26.40%, respectively. The calibration curves were linear in a wide range for all analytes. Correlation coefficients ranged from 0.9941 to 0.9993. The as-established SPME-GC method was used successfully to two real natural samples. Recovery of analytes spiked at 10 μg L(-1) and 100 μg L(-1) ranged from 78.4% to 119.9% and the relative standard deviations were less than 11.3%.  相似文献   

14.
Feng J  Sun M  Xu L  Li J  Liu X  Jiang S 《Journal of separation science》2011,34(18):2482-2488
Multi-walled carbon nanotubes-coated solid-phase microextraction fiber was prepared by a novel protocol involving mussel-adhesive-protein-inspired polydopamine film. The polydopamine was used as binding agent to immobilize amine-functionalized multi-walled carbon nanotubes onto the surface of the stainless steel wire via Michael addition or Schiff base reaction. Surface properties of the fiber were characterized by field emission scanning electron microscope and X-ray photoelectron spectroscope. Six phenols in aqueous solution were used as model compounds to investigate the extraction performance of the fiber and satisfactory results were obtained. Limit of detection was 0.10 μg/L for 2-methylphenol (2-MP) and 4-methylphenol (4-MP), and 0.02 μg/L for 2-ethylphenol (2-EP), 4-ethylphenol (4-EP), 2-tert-butylphenol (2-t-BuP), and 4-tert-butylphenol (4-t-BuP), which were much lower than commercial fiber and fibers made in laboratory. RSDs for one unique fiber are in the range of 1.92-7.00%. Fiber-to-fiber (n=3) reproducibility ranges from 4.44 to 8.41%. It also showed very high stability and durability to acid, alkali, organic solvent, and high temperature. Real water sample from Yellow river was applied to test the reliability of the established solid-phase microextraction (SPME)-GC method and recoveries with addition level at 5 and 100 μg/L were in the range from 81.5 to 110.0%.  相似文献   

15.
A novel solid-phase microextraction (SPME) Pt fiber coated with single-walled carbon nanotubes (SWCNTs) was prepared by electrophoretic deposition (EPD) and applied to the determination of phenols in aqueous samples by direct immersion (DI)-SPME-HPLC-UV. The results revealed that EPD was a simple and reproducible technique for the preparation of SPME fibers coated with SWCNTs without the use of adhesive. The obtained SWCNT coating did not swell in organic solvents nor strip off from substrate, and possessed high mechanical strength due to the strong Van der Waals attractions between the surfaces of the SWCNTs. The prepared SPME fiber was conductive since both SWCNT coating and Pt wire were conductive. Using Pt wire as substrate, the fiber was unbreakable. Owing to the presence of oxygenated groups on SWCNTs and the high surface area of SWCNTs, the SWCNT fiber was similar to or superior to commercial PA fiber in extracting the studied phenols from aqueous sample. A durability of more than 80 analyses was achieved for one unique fiber. Under optimized conditions, the detection limits for the phenols varied between 0.9 and 3.8 ng/mL, the precisions were in the range of 0.7–3.2% (n = 3), and linear ranges were within 10 and 300 ng/mL. The method was successfully applied to the analysis of spiked seawater and tap water samples with the recoveries from 87.5 to 102.0%.  相似文献   

16.
Summary Poly(methylphenylvinylsiloxane) (PMPVS) coating was first prepared using sol-gel technology and applied for solid-phase microextraction (SPME). The extraction properties of the novel coating for volatile and semi-volatile organic compounds were investigated using a homemade SPME device coupled with GC-FID. The porous surface structure of the coating provided high surface area and allowed for high extraction efficiency. Compared with commercial SPME stationary phase, the new phase showed better selectivity and sensitivity toward the various analytes, due to their inherent multifunctional properties and the features of sol-gel chemistry. Furthermore, PMPVS coating showed good thermal stability and long lifetime.  相似文献   

17.
In this paper, a novel graphene (G) based solid-phase microextraction (SPME) fiber was firstly prepared by immobilizing the synthesized G on stainless steel wire as coating. The new fiber possessed a homogeneous, porous and wrinkled surface and showed excellent thermal (over 330 °C), chemical and mechanical stability, and long lifespan (over 250 extractions). The SPME performance of the G-coated fiber was evaluated in detail through extraction of six pyrethroid pesticides. Although the thickness of G-coated fiber was only 6-8 μm, its extraction efficiencies were higher than those of two commercial fibers (PDMS, 100 μm; PDMS/DVB, 65 μm). This high extraction efficiency may be mainly attributed to huge delocalized π-electron system of G, which shows strong π-stacking interaction with pyrethroid pesticide. The G-coated fiber was applied in the gas chromatographic determination of six pyrethroids, and their limits of detection were found to be ranged from 3.69 to 69.4 ng L−1. The reproducibility for each single fiber was evaluated and the relative standard deviations (RSDs) were calculated to be in the range from 1.9% to 6.5%. The repeatability of fiber-to-fiber and batch-to-batch was 4.3-9.2% and 4.1-9.9%. The method developed was successfully applied to three pond water samples, and the recoveries were 83-110% at a spiking of 1 μg L−1.  相似文献   

18.
A relatively selective, chemically and physically robust SPME fiber was developed in a simple way with testosterone-imprinted polymer, and then directly coupled with gas chromatography-mass spectrometry (GC-MS) for selective extraction and analysis of anabolic steroids. The factors influencing polymerization (i.e., cross-linker, polymerization solvent, polymerization time) were optimized in detail and the polymer was characterized by scanning electron microscope, infrared spectrometer and thermogravimetric analyzer. Furthermore, the extraction performance of the MIP-coated SPME fibers such as extraction ability and selectivity was evaluated. Moreover, the interaction mode between target analytes and fiber coating was deducted. Finally, the method for extraction and determination of androsterone, stanolone, androstenedione and methyltestosterone by the homemade MIP-coated SPME fibers with GC-MS was obtained. It was applied to the simultaneous analysis of four anabolic steroids in the spiked human urine with the satisfactory recoveries.  相似文献   

19.
Feng J  Sun M  Xu L  Li J  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(43):7758-7764
Polymeric 1-vinyl-3-octylimidazolium hexafluorophosphate was synthesized in situ on stainless steel wire by surface radical chain-transfer polymerization and used as sensitive coatings in solid-phase microextraction. The outer surface of the stainless steel wire was firstly coated with microstructured silver layer via silver mirror reaction and then functionalized with self-assembled monolayers of 1,8-octanedithiol, which acted as chain transfer agent in the polymerization. Coupled to gas chromatography, extraction performance of the fiber was studied with both headspace and direct-immersion modes using benzene, toluene, ethylbenzene and xylenes (BTEX), phenols and polycyclic aromatic hydrocarbon (PAHs) as model analytes. In combination with the microstructured silver layer, the PIL-coated fiber exhibited high extraction efficiency. Linear ranges for BTEX with headspace mode were in the range of 0.2-1000 μg L(-1) for benzene, and 0.1-1000 μg L(-1) for toluene, ethylbenzene and xylenes. Limits of detection (LODs) were from 0.02 to 0.05 μg L(-1). Wide linear ranges of direct-immersion mode for the extraction of several phenols and PAHs were also obtained with correlation coefficients (R) from 0.9943 to 0.9997. The proposed fiber showed good durability with long lifetime. RSDs of 56 times extraction were still in an acceptable range, from 8.85 to 22.8%.  相似文献   

20.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号