首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

2.
In the present paper, we describe utilization of cathode active material as anode active material, for example, Li2MnSiO4. The lithium manganese silicate has been successfully synthesized by solid-state reaction method. The X-ray diffraction pattern confirms the orthorhombic structure with Pmn2 1 space group. The Li/Li2MnSiO4 cell delivered the initial discharge capacity of 420 mA h g−1, which is 110 mA h g−1 higher than graphitic anodes. The electrochemical reversibility and solid electrolyte interface formation of the Li2MnSiO4 electrode was emphasized by cyclic voltammetry.  相似文献   

3.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

4.
The emission and excitation spectra of Gd2SiO5∶Eu3+ were investigated using the VUV beam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results were discussed in the frame of visible quantum cutting process involved in Gd3+−Eu3+ system. Upon direct excitation into the6G J states of Gd3+, two visible photon emissions from Eu3+ were observed. Cursory evaluation proved that Gd2SiO5∶Eu3+ is an efficient visible quantum cutter.  相似文献   

5.
The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10−4 s−1, no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10−4−5.0×10−2 s−1, phase separation occurs in a high deformation degree. As the strain rate reaches 5.0×10−1 s−1, phase separation and nanocrystallization concur. The critical deformation degree for occurrence of phase transformation decreases with the strain rate increasing. Supported by the National Natural Science Foundation of China (Grant No. 50471016)  相似文献   

6.
The manganese oxide/multi-walled carbon nanotube (MnO2/MWNT) composite and the manganese oxide/acetylene black (MnO2/AB) composite were prepared by translating potassium permanganate into MnO2 which formed the above composite with residual carbon material using the redox deposition method and carbon as a reducer. The products were characterized by X-ray diffraction, Fourier transform infrared, and scanning electron microscope. Electrochemical properties of both the MnO2/MWNT and MnO2/AB electrodes were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the MnO2/MWNT electrode has better electrochemical capacitance performance than the MnO2/AB electrode. The charge–discharge test showed the specific capacitance of 182.3 F·g−1 for the MnO2/MWNT electrode, and the specific capacitance of 127.2 F·g−1 for the MnO2/AB electrode had obtained, within potential range of 0–1 V at a charge/discharge current density of 200 mA·g−1 in 0.5 mol·L−1 potassium sulfate electrolyte solution in the first cycle. The specific capacitance of both the MnO2/MWNT and MnO2/AB electrodes were 141.2 F·g−1 and 78.5 F·g−1 after 1,200 cycles, respectively. The MnO2/MWNT electrode has better cycling performance. The effect of different morphologies was investigated for both MnO2/MWNT and MnO2/AB composites.  相似文献   

7.
The cathode materials, pristine Li2MnSiO4 and carbon-coated Li2MnSiO4 (Li2MnSiO4/C), were synthesized by the sol–gel method. Power X-ray diffraction and scanning electron microscopy analyses show that the presence of carbon during synthesis can weaken the formation of impurities in the final product and decrease the particle size of the final product. The effects of carbon coating on electrochemical characteristics were investigated by galvanostatic cycling test and electrochemical impedance spectroscopy. The galvanostatic cycling test results indicate that Li2MnSiO4/C cathode exhibits better electrochemical performance with an initial discharge capacity of 134.4 mAh g−1 and a capacity retention of 63.9 mAh g−1 after 20 cycles. Electrochemical impedance analyses confirm that carbon coating can increase electronic conductivity, which results in good electrochemical performance of Li2MnSiO4/C cathode. The two semicircles and the large arc obtained in this study can be attributed to the migration of lithium ions through the solid electrolyte interphase films, the electronic properties of the material, and the charge transfer step, respectively.  相似文献   

8.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

9.
LiFePO4-C was prepared by the solid-state reaction using LiH2PO4, Fe2O3, and glucose as raw materials, which is a green and low-cost method. Thermogravimetry, differential scanning calorimetry, X-ray diffraction, and element analyzer were used to study the phase and carbon content of the synthesized samples. The optimum conditions for synthesizing LiFePO4 are identified. The discharge capacity of 120 mAh g−1 was achieved at a current density of 100 mA g−1 between 2.5 and 4.2 V during the first 50 cycles.  相似文献   

10.
We hereby report a theoretical study on the equilibrium geometries, electronic structures and harmonic vibrational frequencies of Ga2Se3, Ga3Se2 and their anions. The ground and low-lying excited states of Ga2Se3, Ga2Se3, Ga3Se2 and Ga3Se2 are studied at the B3LYP and/or MP2 and CCSD(T) levels in conjunction with 6-311+G(d) and 6-311+G(2df) one particle basis sets. Ga2Se2 adopts the C2v kite geometry while Ga2Se3 has a ‘V’ geometry. Ga3Se2 has a three-dimensional ‘D3h ’ geometry and Ga3Se2 prefers the three-dimensional ‘C2v ’ structure. Electron detachment energies from the ground electronic states of the anions to several neutral states are reported and discussed. At CCSD(T)//MP2 level, the adiabatic electron affinity (AEA) of Ga2Se3 is calculated to be 3.23 eV when using the 6-311+G(2df) basis set and that of Ga3Se2 is 2.77 eV with the 6-311+G(d) basis set. The findings of this research are analyzed and compared with gallium oxide and sulfide analogues.  相似文献   

11.
LiSmxMn2–xO4 samples were synthesized via co-precipitation technique. The structural properties of the synthesized materials were studied using X-ray diffraction analysis and it confirmed the cubic spinel structure for all the compounds. The lattice parameter of LiMn2O4 was observed to be 8.2347 Ǻ and it decreased with Sm3+ concentration, due to the shrinkage in cell volume aided by higher binding energy between Sm-O bond. The SEM micrographs were analyzed using Image processing software (Image-J) to ascertain the pore and grain properties. The microwave synthesis had been observed to control the bulk grain formation and had yielded lesser porous and nanoparticles. The particle size distributions obtained through photocross correlation laser diffraction analysis had shown that LiMn2O4 with 60 nm and Sm-doped compounds with ∼30 nm, respectively. The cyclic voltammetry studies had revealed the decrease in electrocatalytic behavior in the initial cycle for compounds doped with Sm3+ ion. The initial capacities of LiMn2O4, LiSm0.05Mn1.95O4 and LiSm0.10Mn1.90O4 substituted compounds were observed to be 134.87 mAhg−1, 132.22 mAhg−1 and 126.41 mAhg−1, respectively. The cells were simulated using 1D model namely Dualfoil5.1 program. The simulated results coincide well with the measured results. The cycle life studies reveal 93% capacity retention of samarium-0.05-doped samples when compared with 78.4% of the LiMn2O4.  相似文献   

12.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

13.
Pure monoclinic (m-) and tetragonal (t-) LaVO4 nanorods are successfully obtained via a facile oxides-hydrothermal method, in which V2O5 and La2O3 bulk powders are directly utilized as precursors without pretreatment. It is found that ethylenediamine tetraacetic disodium salt (EDTA) is a key factor for synthesizing t-LaVO4. The as-obtained products are characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED). The FTIR spectra of VO4 around 800 cm−1 are suggested as an effective auxiliary means to identify the crystal phase of LaVO4. UV–Visible spectra of LaVO4 nanomaterials are obvious blue shift compared with the bulk m-LaVO4 materials. The different photoluminescent properties of Eu3+ doped m- and t-LaVO4 are demonstrated. A dissolution–precipitation mechanism is mainly responsible for the anisotropic morphology and phase control evolution of the LaVO4 nanocrystals. The oxides-hydrothermal system is also applicable to prepare other pure LnVO4 (Ln3+: Nd3+, Y3+, Sm3+) and doped LnVO4 nanomaterials.  相似文献   

14.
Bi2S3 nanotubes and de-doped poly(3,4-ethylenedioxythiophene) (PEDOT) composite nanopowders were synchronously synthesized by a one-pot self-assembly method. The powders were characterized by X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, respectively. Thermoelectric properties of the Bi2S3–PEDOT composite nanopowders with different Bi2S3 contents after being cold pressed into pellets were measured at room temperature. The sample with 36.1 wt% Bi2S3 has a highest power factor of 2.3 μWm−1K−2, which is higher than that of both pure PEDOT (0.445 μWm−1K−2) and Bi2S3 (1.94 μWm−1K−2).  相似文献   

15.
Electron paramagnetic resonance (EPR) studies on a single crystal of diamagnetic compound La2Si2O7, potentially a phosphorescent/luminescent/laser material, with the Gd3+ ion substituting for the La3+ ion, were carried out at X-band (9.61 GHz) over the 4–295 K temperature range. The asymmetry exhibited by the Gd3+ EPR line positions for the orientations of the external magnetic field about the magnetic Z- and Y-axes in the ZY-plane was ascribed to the existence of monoclinic site symmetry at the site of the Gd3+ ion, as confirmed by the significant values of the spin Hamiltonian parameters g YZ , b 2 −1, b 4 m (m = 1, 3), b 6 m (m = 1, 3, 5), estimated by fitting all EPR line positions observed at room temperature for the orientation of the magnetic field in the magnetic ZX- and ZY-planes using a rigorous least-squares fitting procedure. At 8 K measurements were only carried out for orientation of B in the magnetic ZX-plane, due to difficulty in orientation of the crystal inside the cryostat, enabling estimation of all spin Hamiltonian parameters b n m except those characterized by negative m values and g YZ . The absolute sign of the zero-field splitting parameter b 2 0 was determined to be negative from the relative intensities of the lines at 8 K. Authors' address: Sushil K. Misra, Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada  相似文献   

16.
A new method for the determination of trace mercury by solid substrate-room temperature phosphorimetry (SS-RTP) quenching method has been established. In glycine-HCl buffer solution, xylenol orange (XO) can react with Sn4+ to form the complex [Sn(XO)6]4+. [Sn(XO)6]4+ can interact with Fin (fluorescein anion) to form the ion associate [Sn(XO)6]4+·[(Fin)4], which can emit strong and stable room temperature phosphorescence (RTP) on polyamide membrane (PAM). Hg2+ can catalyze H2O2 oxidizing the ion association complex [Sn(XO)6]4+·[(Fin)4], which causes the RTP to quench. The ΔIp value is directly proportional to the concentration of Hg2+ in the range of 0.016–1.6 fg spot−1 (corresponding concentration: 0.040–4.0 pg ml−1, 0.40 μl spot−1), and the regression equation of working cure is ΔIp=10.03+83.15 m Hg2+ (fg spot−1), (r=0.9987, n=6) and the detection limit (LD) is 3.6 ag spot−1(corresponding concentration: 9.0×10–15 g ml−1, the sample volume: 0.4 μl). This simple, rapid, accurate method is of high selectivity and good repeatability, and it has been successfully applied to the determination of trace mercury in real samples. The reaction mechanism for catalyzing H2O2 oxidizing the ion association complex ([Sn(XO)6]4+·[(Fin)4]) SS-RTP quenching method to determine trace mercury is also discussed.  相似文献   

17.
The electron paramagnetic resonance spectra of KTaO3: Mn nanocrystalline powders in the temperature range from 77 to 620 K have been measured and studied for the first time. The change observed in the spectra has been investigated as a function of the doping level. The doping regions in which Mn2+ ions are individual paramagnetic impurities have been established, as well as the regions where the dipole-dipole and exchange interactions of these ions begin to occur. The spin-Hamiltonian constants for the spectrum of non-interacting individual Mn2+ ions have been determined as follows: g = 2.0022, D = 0.0170 cm−1, and A = 85 × 10−4 cm−1. A significant decrease in the axial constant D in the KTaO3: Mn nanopowder, as compared to the single crystal, has been explained by the remoteness of the charge compensator from the paramagnetic ion and by the influence of the surface of the nanoparticle. It has been assumed that the Mn2+ ions are located near the surface and do not penetrate deep into the crystallites.  相似文献   

18.
LiCoO2 thin films were prepared by electron beam evaporation technique using LiCoO2 target with Li/Co ratio 1.1 in an oxygen partial pressure of 5 × 10−4 mbar. The films prepared at substrate temperature T s < 573 K were amorphous in nature, and the films prepared at T s > 573 K exhibited well defined (104), (101), and (003) peaks among which the (104) orientation predominates. The X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) data revealed that the films prepared in the substrate temperature range 673–773 K are nearly stoichiometric. The grain size increases with an increase of substrate temperature. The Co–eg absorption bands, are empty and their peak position lies at around 1.7 eV above the top to the Co–t2g bands. The fundamental absorption edge was observed at 2.32 eV. The films annealed at 1,023 K in a controlled oxygen environment exhibit (104) out plane texture with large grains. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006  相似文献   

19.
A new three-matrix mixed vanadate crystal Nd:Lu0.33Y0.36Gd0.3VO4 (Nd:LuYGdVO4) crystal was grown by the Czochralski method. Room temperature absorption and fluorescence spectra of the Nd:LuYGdVO4 crystals were measured and the spectroscopic parameters were calculated by the Judd-Ofelt theory. The intensity parameters of the Nd:LuYGdVO4 crystal were Ω2 = 9.736 × 10−20 cm2, Ω4 = 4.179 × 10−20 cm2, Ω6 = 8.020 × 10−20 cm2 and the stimulate emission cross section was 5.3 × 10−19 cm2. Diodepumped actively Q-switched and passively Q-switched Nd:LuYGdVO4 and Nd:Lu0.14Y0.86VO4 lasers at 1.06 μm were demonstrated. The results indicate that, for both actively and passively Q-switched lasers, the Nd:LuYGdVO4 lasers can generate shorter pulse width with higher peak power than the Nd:Lu0.14Y0.86VO4 lasers at the same cavity conditions.  相似文献   

20.
A simple and sensitive chemiluminescence (CL) method coupled with flow-injection technique is proposed to determine naproxen (NAP). The method is based upon the enhancement of the weak CL signal arising from the reaction of Ce(IV) and Na2S2O4 with Eu3+ to form the Eu3+-Ce(IV)-Na2S2O4 system. The CL intensity was significantly increased by the introduction of NAP into this system in the presence of silver nanoparticles (Ag NPs). Examination of the recorded UV–vis spectra and fluorescence spectra indicated that the energy of the intermediate SO2*, which originated from the redox reaction of Ce(IV) and Na2S2O4, was transferred to Eu3+ via NAP and that the process was accelerated by Ag NPs due to their catalytic activity. Under the optimum conditions, the CL intensity was increased with increasing NAP concentration and the correlation was linear (r = 0.9992) over the NAP concentration range of 1–420 ng mL−1. The limit of detection (LOD) was 0.11 ng mL−1 with a relative standard deviation (RSD) of 1.15% for 5 replicate determinations of 200 ng mL−1 NAP. The method was successfully applied to determine NAP in pharmaceutical and biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号