首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.Centre National de la Recherche Scientifique. Université Joseph Fourier, Institut National Polytechnique de Grenoble.  相似文献   

2.
3.
4.
Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.  相似文献   

5.
The liquid turbulence structure of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. A dual optical probe was used to measure the bubble characteristics, while the liquid turbulence was measured using hot-film anemometry. Experiments were performed at two liquid superficial velocities of 0.2 and 0.68 m/s for gas superficial velocities in the range of 0–0.18 m/s, corresponding to an area averaged void fraction up to 13.6%. In general, there is an increase in the liquid turbulence energy when the bubbles are introduced into the liquid flow. The increase in the energy mainly occurs over a range of length scales that are on the order of the bubble diameter. A suppression of the turbulence was observed close to the wall at very low void fraction flows. Initially, the suppression occurs in the low wave number range and then extends to higher wave numbers as the suppression is increased.  相似文献   

6.
A new and unique high-resolution image acquisition system for digital particle image velocimetry (DPIV) in turbulent flows is used for the measurement of fully-developed turbulent pipe flow at a Reynolds number of 5300. The flow conditions of the pipe flow match those of a direct numerical simulation (DNS) and of measurements with conventional (viz., photographic) PIV and with laser-Doppler velocimetry (LDV). This experiment allows a direct and detailed comparison of the conventional and digital implementations of the PIV method for a non-trivial unsteady flow. The results for the turbulence statistics and power spectra show that the level of accuracy for DPIV is comparable to that of conventional PIV, despite a considerable difference in the interrogation pixel resolution, i.e. 32 × 32 (DPIV) versus 256 × 256 (PIV). This result is in agreement with an earlier analytical prediction for the measurement accuracy. One of the advantages of DPIV over conventional PIV is that the interrogation of the DPIV images takes only a fraction of the time needed for the interrogation of the PIV photographs.  相似文献   

7.
8.
Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.  相似文献   

9.
The character of transitional capillary flow is investigated using pressure-drop measurements and instantaneous velocity fields acquired by microscopic PIV in the streamwise–wall-normal plane of a 536 μm capillary over the Reynolds-number range 1,800 ≤ Re ≤ 3,400 in increments of 100. The pressure-drop measurements reveal a deviation from laminar behavior at Re = 1,900 with the differences between the measured and the predicted laminar-flow pressure drop increasing with increasing Re. These observations are consistent with the characteristics of the mean velocity profiles which begin to deviate from the parabolic laminar profile at Re = 1,900, interpreted as the onset of transition, by becoming increasingly flatter and fuller with increasing Re. A fully-turbulent state is attained at Re ≅ 3,400 where the mean velocity profile collapses onto the mean profile of fully-developed turbulent pipe flow from an existing direct numerical simulation at Re = 5,300. Examination of the instantaneous velocity fields acquired by micro-PIV in the range 1,900 ≤ Re < 3,400 reveal that transitional flows at the microscale are composed of a subset of velocity fields illustrating a purely laminar behavior and a subset of fields that capture significant departure from laminar behavior. The fraction of velocity fields displaying non-laminar behavior increases with increasing Re, consistent with past observations of a growing number of intermittent turbulent spots bounded by nominally laminar flow in macroscale pipe flow with increasing Re. Instantaneous velocity fields that are non-laminar in character consistently contain multiple spanwise vortices that appear to streamwise-align to form larger-scale interfaces that incline slightly away from the wall. The characteristics of these “trains” of vortices are reminiscent of the spatial features of hairpin-like vortices and hairpin vortex packets often observed in fully-turbulent wall-bounded flow at both the macro- and micro-scales. Finally, single-point statistics computed from the non-laminar subsets at each transitional Re, including root-mean-square velocities and the Reynolds shear stress, reveal a gradual and smooth maturation of the patches of disordered motion toward a fully-turbulent state with increasing Re.  相似文献   

10.
Direct numerical simulations are used to examine laminar bubbly flows in vertical channels. For equal size nearly spherical bubbles the results show that at steady state the number density of bubbles in the center of the channel is always such that the fluid mixture there is in hydrostatic equilibrium. For upflow, excess bubbles are pushed to the walls, forming a bubble rich wall-layer, one bubble diameter thick. For downflow, bubbles are drawn into the channel center, leading to a wall-layer devoid of bubbles, of a thickness determined by how much the void fraction in the center of the channel must be increased to reach hydrostatic equilibrium. The void fraction profile can be predicted analytically using a very simple model and the model also gives the velocity profile for the downflow case. For the upflow, however, the velocity increase across the wall-layer must be obtained from the simulations. The slip velocity of the bubbles in the channel core and the velocity fluctuations are predicted reasonably well by results for homogeneous flows.  相似文献   

11.
Experimental results for various water and air superficial velocities in developing adiabatic horizontal two-phase pipe flow are presented. Flow pattern maps derived from videos exhibit a new boundary line in intermittent regime. This transition from water dominant to water–gas coordinated regimes corresponds to a new transition criterion CT = 2, derived from a generalized representation with the dimensionless coordinates of Taitel and Dukler.Velocity, turbulent kinetic energy and dissipation rate, void fraction and bubble size radial profiles measured at 40 pipe diameters for JL = 4.42 m/s by hot film velocimetry and optical probes confirm this transition: the gas influence is not continuous but strongly increases beyond JG = 0.06 m/s. The maximum dissipation rate, derived from spectra, is increased in two-phase flow by a factor 5 with respect to the single phase case.The axial evolution of the bubble intercept length histograms also reveal the flow organization in horizontal layers, driven by buoyancy effects. Bubble coalescence is attested by a maximum bubble intercept evolving from 2.5 to 4.5 mm along the pipe. Turbulence generated by the bubbles is also manifest by the 4-fold increase of the maximum turbulent dissipation rate along the pipe.  相似文献   

12.
Results from direct numerical simulations of laminar bubbly flow in a vertical channel are compared with predictions of a two-fluid model for steady-state flow. The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The model is then tested by comparisons with different values of flow rate and gravity, as well as downflow. In all cases the results agree reasonably well, even though the simulated void fraction is considerably higher than what is assumed in the derivation of the model. The results do, however, suggest a need to understand the lift and the wall repulsion force on bubbles better, particularly in dense flows.  相似文献   

13.
In the present study, we employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant. The tested drag-reducing fluid was a CTAC/NaSal/Water (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) system at 25°C. The weight concentration of CTAC was 30 ppm. Stereoscopic PIV measurement was performed for a water flow (Re=1.1×104) and a CTAC solution flow (Re=1.5×104 with 54% drag reduction) in both the streamwise–spanwise and wall-normal-spanwise planes, respectively. The three-dimensionality of hairpin vortex structures in the near-wall region for wall-bounded turbulent flow was reproduced by conditionally averaging the stereoscopic two-dimensional-three-component velocity fields. A series of wall-normal vortex cores were found to align with the near-wall low-speed streaks with opposite vorticity signals at both sides of the streaks and with the vorticity decreased on average by about one order of magnitude in CTAC solution flow compared with water flow; the spanwise spacing between the near-wall low-speed streaks in the solution flow is increased by about 46%. The streamwise vorticity of the vortex cores appearing in the wall-normal-spanwise plane was also decreased by the use of drag-reducing surfactant additives.  相似文献   

14.
The particle image velocimetry technique was used to measure characteristics of a turbulent flow over a transitionally-rough fixed bed in an open-channel flow. These conditions are typical of flows encountered in sediment transport problems. Measurements obtained with this technique were used to investigate the distributions of velocities, turbulence intensities, Reynolds stress, and third- and fourth-order moments in a region above y + = 10. The present results are in good agreement to those previously obtained on smooth walls and provide further evidence that PIV can be applied successfully to investigate turbulence in open-channel flows over a rough bed.  相似文献   

15.
The purpose of the current paper is to describe an experimental study of the spatially correlated precision errors associated with particle image velocimetry (PIV) measurements made in turbulent flows. A free jet was used as the base flow for the study. The precision error of time-averaged statistics of the mean and turbulent flowfield is governed by the probability distribution function of the various quantities and the finite sample size of the data sets. Spatial measurements that are separated by a distance that is shorter than the size of the large turbulent scales will not be independent, resulting in a correlated precision error. The characteristics of the precision error for various statistics will be described. It is found that mean vorticity has a correlated precision error that is limited to a much smaller length scale. The results demonstrate the importance of understanding the role of error correlation in the interpretation of PIV data.  相似文献   

16.
The purpose of this paper is to show that the measurement of turbulent spectrum using wholefield velocity techniques such as particle image velocimetry (PIV) is possible. Toward this end, data from the axial plane of a self-similar turbulent axisymmetric jet, at a Reynolds number, based on Taylor microscale of 30 has been analyzed. The two-dimensional velocity data are first high-pass filtered, which educes the vortices. An automated method is then used to identify the vortices and measure their properties. By directly measuring the energy of the vortices, it is possible to plot the turbulence spectrum. The spectrum presented here shows the presence of energy containing and inertial regimes. However, the smallest scales have not been resolved in the measurements. The slope of the spectrum in the inertial subrange is about −1.6. The number of vortices in the two regimes have also been measured. The number of vortices in the energy containing regime is substantially smaller than those in the inertial subrange. The technique has been verified by analyzing another dataset. These results show that the direct measurement of vortex properties with reasonable confidence is possible using PIV and an appropriate vortex eduction technique.  相似文献   

17.
A two-color digital particle image velocimetry and accelerometry (DPIV and DPIA) measurement technique is described that records the velocity and acceleration fields of both the solid and liquid phases simultaneously. Measurements were taken at turbulent conditions of a vertical pipe flow using glass spheres as the solid phase and fluorescent particles to indicate fluid phase motion. Nd-YAG pulse lasers acted as illumination sources and images were recorded by two monochrome CCD cameras. The two-color aspect of the technique was realized by placing optical filters in front of the cameras to discriminate between the phases. Cross-correlations and auto-correlations were applied to determine velocity and acceleration fields of the two phases. Results showing some of the capabilities of the technique as applied to a two-phase pipe flow experiment are provided. For the condition studied, it was found that there was turbulence suppression due to the solid phase and that the statistics associated with the acceleration probability distribution were different for the solid and fluid phases.  相似文献   

18.
Structure waves occur in two-phase flows because one phase drifts with respect to the other, the drift flux being primarily a function of the flow structure. The wave properties provide information on the closure laws required in engineering models. Experiments made with an air-water bubbly mixture flowing in a vertical annular test section are reported. Void fluctuations involving structure disturbances were detected by capacitance measurements, the effect of individual bubbles being always negligible. Only low frequency disturbances were present, high frequency disturbances being strongly damped. Within the low frequency range, the wave velocity is independent of the frequency, and the damping is small. The wave velocity is always comprised between the average liquid velocity and the average gas velocity.
Résumé Des ondes de structure apparaissent dans les écoulements diphasiques parce que les phases n'ont pas la même vitesse moyenne, le flux de glissement correspondant étant essentiellement fonction de la structure de l'écoulement. Les propriétés des ondes apportent des informations sur les lois de fermetures requises par les modèles pratiques. On présente les résultats d'expériences effectuées avec un écoulement eau-air à bulles dans une section annulaire verticale. Les fluctuations de taux de vide dues aux perturbations de structure sont détectées par mesure de capacité (l'effect d'une bulle unique est toujours négligeable). Seules les perturbations de basse fréquence peuvent subsister, les perturbations de haute fréquence étant fortement amorties. Dans la gamme basse fréquence, la vitesse des ondes est indépendante de la fréquence et l'amortissement est faible. La vitesse des ondes est toujours comprise entre la vitesse moyenne du liquide et la vitesse moyenne du gaz.
  相似文献   

19.
A first-order accurate method of extending the capability of image velocimetry to interfaces is presented. In this method, the image fields are locally extended across interfaces using fields from the other image of an image pair. During this image parity exchange, the extension of the image fields amounts to locally reversing and reflecting the relative velocity field across the interface. Numerous experimental examples are given to demonstrate and validate the accuracy of the method. These are the plane Couette flow and the laminar pipe flow demonstrating straight rigid boundaries; uniform flow past a sphere and a sphere moving in a stagnant fluid demonstrating curved rigid surfaces; and a free-surface flow and a liquid–liquid interface flow demonstrating compliant interfaces. Received: 3 November 1998/Accepted: 18 August 1999  相似文献   

20.
Particle tracking velocimetry (PTV) is applied to a bubbly two-phase turbulent flow in a horizontal channel at Re = 2 × 104 to investigate the turbulent shear stress profile which had been altered by the presence of bubbles. Streamwise and vertical velocity components of liquid phase are obtained using a shallow focus imaging method under backlight photography. The size of bubbles injected through a porous plate in the channel ranged from 0.3 to 1.5 mm diameter, and the bubbles show a significant backward slip velocity relative to liquid flow. After bubbles and tracer particles are identified by binarizing the image, velocity of each phase and void fraction are profiled in a downstream region. The turbulent shear stress, which consists of three components in the bubbly two-phase flow, is computed by analysis of PTV data. The result shows that the fluctuation correlation between local void fraction and vertical liquid velocity provides a negative shear stress component which promotes frictional drag reduction in the bubbly two-phase layer. The paper also deals with the source of the negative shear stress considering bubble’s relative motion to liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号