首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study was made on the alloy Fe65Si35 using x-ray diffraction and M?ssbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100?h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75?h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75?h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.  相似文献   

2.
B2-Fe47Al53 intermetallics has been produced by mechanical alloying in a planetary ball mill, using elemental Fe, Al and Ni powder mixture. The microstructural and magnetic properties of the mechanically alloyed Fe50Al40Ni10 powdered samples were investigated by X-ray diffraction and 57Fe Mössbauer spectrometry at 300 and 77 K. As resulted from the X-ray diffraction studies, the ordered B2 structure was formed in the Fe50Al40Ni10 powder, together with the bcc αi-Fe(Al, Ni) (i = 1, 2) solid solutions. Further milling led to a partial disordering of B2-Fe47Al53; it has undergone an order–disorder transition which is characterized by an expansion of the volume Δa0 (lattice disorder) and a magnetic transition from the paramagnetic to ferromagnetic state which is characterized by strong ferromagnetic interactions in the alloy. The nanocrystalline bcc αi-Fe(Al, Ni) solid solution was ferromagnetic with a mean crystallite size of 6 nm.  相似文献   

3.
Nanocrystalline Fe50Ni50 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0–50 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Mössbauer spectroscopy and the vibrating sample magnetometer (VSM). The complete formation of γ-FeNi is observed after 24 h milling. When milling time increases from 0 to 50 h, the lattice parameter increases towards the Fe50Ni50 bulk value, the grain size decreases from 67 to 13 nm, while the strain increases from 0.09% to 0.41%. Grain morphologies at different formation stages were observed by SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time.  相似文献   

4.
Nanostructured Fe50Co50 powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and 57Fe Mössbauer spectroscopy. The complete formation of bcc Fe50Co50 solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Mössbauer spectra confirm the beginning of the formation of Fe50Co50 phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed.  相似文献   

5.
Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of β-Al(Cu,Fe) solid solution phase (β-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The β-phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.  相似文献   

6.
This research investigates the synthesis and size-dependent melting point depression of complex metallic alloy (CMA) nanoparticles. Al12Mg17 which belongs to this new category of intermetallic materials was initially produced as pre-alloyed ingot, then homogenized to achieve single phase compound and crushed into small size powder and finally, mechanically milled in a planetary ball mill to synthesize nanoparticles. Phase and microstructural characterizations of the as-crushed and milled powders were performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Effects of the mechanical milling on thermal behavior of the Al12Mg17 nanoparticles in comparison with as-cast Al12Mg17 ingot has been investigated by differential scanning calorimetry (DSC) measurement. It was found that an average particle size of 24 nm with crystallite size of 16 nm was achieved after 20 h of ball milling process. The size- dependent melting point depression of the Al12Mg17 nanoparticles has been experimentally observed and also comparison of the obtained results with theoretical models was carried out.  相似文献   

7.
FeSi10Cr10 powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. The microstructural and magnetic properties of the milled powders were characterized by scanning electron microscopy, X-ray diffraction, 57Fe Mössbauer spectrometry and a vibratory sample magnetometer.After 3 h of milling, the formation of two bcc solid solutions α-Fe1 (Si, Cr) and α-Fe2 (Si, Cr) is observed. Their grain sizes decrease with increase in milling time attaining, at 15 h of milling, 23 and 11 nm, respectively. Mössbauer spectra of the milled powder show the presence of two components. One is a ferromagnetic type with a broad sextuplet. Its distribution of hyperfine field is characterized by high and low hyperfine field’s peaks and a mean value of 26.5 T. The other is a single paramagnetic peak. Its low concentration increases to ∼4% at 15 h of milling. These results can be explained by different atomic environments affected by Si or/and Cr elements, as well as the increased disordered grain boundaries.Magnetic measurements of the milled FeSi10Cr10 alloy powder exhibit a soft ferromagnetic character with a decrease of both magnetization at saturation (Ms) and coercive force (Hc) with milling time attaining values of Ms=151 emu/g and Hc=2500 A/m at 30 h of milling time.  相似文献   

8.
Mechanically alloyed (Fe80Al20)100???x Si x alloys (with x?=?0, 10, 15 and 20) were prepared by using a high energy planetary ball mill, with milling times of 12, 24 and 36 h. The structural and magnetic study was conducted by X-rays diffraction and Mössbauer spectrometry. The system is nanostructured and presents only the BCC disordered phase, whose lattice parameter remains constant with milling time, and decreases when the Si content increases. We found that lattice contraction is influenced 39% by the iron substitution and 61% by the aluminum substitution, by silicon atoms. The Mössbauer spectra and their respective hyperfine magnetic field distributions show that for every milling time used here, the ferromagnetism decreases when x increases. For samples with x?≥?15 a paramagnetic component appears. From the shape of the magnetic field distributions we stated that the larger ferromagnetic phase observed in the samples alloyed during 24 and 36 h is a consequence of the structural disorder induced by mechanical alloying.  相似文献   

9.
The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.  相似文献   

10.
J. J. Suñol 《哲学杂志》2013,93(20):2323-2342
Progress in the ball milling amorphization of elemental powders with the overall composition Fe40Ni40P20 ? xSix (X = 6, 10 and 14) and thermally induced crystallization of obtained alloys were characterized by differential scanning calorimetry, X-ray diffraction and transmission Mössbauer spectroscopy (TMS). Diffusion of Si into Fe and Ni alloys promotes the formation of the amorphous phase, via previous formation of (Fe, Ni) phosphides. After milling for 32–64 h, most of the powders are amorphous but bcc Fe(Si) crystallites remain (about 5% in volume). TMS results indicate that homogenization of the amorphous phase occurs by interdiffusion of Ni and Fe in Fe(Si,P)-rich and Ni(Si,P)-rich zones respectively. Annealing induces structural relaxation of stresses induced by milling, growth of bcc Fe(Si) crystallites, precipitation of bcc Fe(Si) and fcc Ni–Fe, and minor phases of Ni-rich silicides and (Fe, Ni) phosphides. The main ferromagnetic phase is bcc Fe(Si) for Fe40Ni40P10Si10 powders obtained after milling for 32 h. However, it is fcc Fe–Ni for the same alloy after milling for 64 h. In the later powders, as well as for alloys with x = 6 and 14 milled for 32 h, the fcc Fe–Ni shows the Invar magnetic collapse.  相似文献   

11.
In the present work, the formation of the Al70Cu20Fe10 icosahedral phase by mechanical alloying the elemental powders in a high-energy planetary mill was investigated by X-ray diffraction and Mössbauer spectroscopy. It was verified that the sample milled for 80 h produces an icosahedral phase besides Al(Cu, Fe) solid solution (β-phase) and Al2Cu intermetallic phase. The Mössbauer spectrum for this sample was fitted with a distribution of quadrupole splitting, a doublet and a sextet, revealing the presence of the icosahedral phase, β-phase and α-Fe, respectively. This compound is not a good hydrogen storage. The results of the X-ray diffraction and Mössbauer spectroscopy of the sample milled for 40 h and annealed at 623°C for 16 h shows essentially single i-phase and tetragonal Al7Cu2 Fe phase.  相似文献   

12.
The intermetallic phase CoZr was milled in a planetary ball mill. X-ray diffraction shows that the crystalline Bragg reflexes vanish totally with increasing milling period while simultaneously a broad maximum appears, attributed to a developing amorphous phase. To amorphize the intermetallic phase completely it takes a relatively long milling period (100 h), whereas a powder mixture of the elements of 50 at% Co and 50 at% Zr is already completely amorphized after 8 h of mechanical alloying. Both amorphous powders produced by different starting materials show identical properties by means of X-ray diffraction, measurement of the released crystallization enthalpy, the absolute specific heat capacity, and Mößbauer spectroscopy. TEM analysis of the intermetallic phase confirms the simultaneous presence of amorphous and remaining crystalline grains after short milling periods and the complete amorphization after long milling periods. A possible explanation for the amorphization process of the compound may be the accumulation of internal strain in the crystalline grains during the milling process. Another possible explanation may be the addition of iron impurities to the stoichiometric compound due to the wear debris of the milling balls and the milling vials of stainless steel.Dedicated to Professor Dr. phil., Dr. h.c. mult. Friedrich Hund on the occasion of his 95th birthday  相似文献   

13.
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and $\upalpha$ -Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.  相似文献   

14.
In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).  相似文献   

15.
A coarse-grained sigma phase Fe48.1V51.9 was ground in argon in a vibratory mill in the presence of a small but steady air supply. The oxygen content increases regularly at a rate of about 0.25 at.%/h. During the first 140 h of milling, the sigma phase transforms into a heterogeneous bcc alpha phase because of a preferential oxidation of the sole vanadium atoms into V2O3. At that milling time, the average composition of the remaining bcc alloy is ~Fe80V20. Mössbauer spectroscopy shows too the presence of an amorphous phase. For longer milling times, ternary Fe–V–O spinel phases do form.  相似文献   

16.
Nanocrystalline single phase cubic Ti0.9Al0.1B has been prepared at room temperature in a minimum duration of 4 h by mechanical alloying the stoichiometric mixture of Ti, Al and B powders in a high energy planetary ball mill under argon atmosphere. The Rietveld's structure refinement of X-ray diffraction data reveals that cubic Ti–Al–B phase is initiated just after 1 h of milling and at the same time α-Ti (hcp) phase partially transforms to metastable β-Ti (bcc) phase. In the course of milling, ordered Ti–Al–B lattice gradually transforms to a distorted state and the degree of distortion increases with milling time up to 15 h. The formation of cubic Ti0.9Al0.1B is also confirmed from the selected area electron diffraction (SAED) pattern. Microstructure characterization by high resolution transmission electron microscopy (HRTEM) reveals that Ti–Al–B nanoparticles are isotropic in nature with average particle size ~4.5 nm and is in good agreement with the value obtained from the Rietveld analysis of X-ray diffraction data.  相似文献   

17.
Double iron and aluminum carbides were prepared by mechanical alloying from elemental powders, with a ball-to-powder weight ratio 20:1. The samples were milled for 1, 3, 5, 10, 15, 20 and 25 h. The alloy progress for each milling time was evaluated by X-ray diffraction (XRD) and 57Fe Mössbauer spectroscopy. Once the alloy was consolidated two sorts of paramagnetic sites and a magnetic distribution were detected according to the Mössbauer fit. The majority doublet could correspond to Fe3AlC0.5 carbide as X-ray diffraction suggest, and the other could be Fe3AlC0.69; the magnetic distribution corresponding to Fe3Al phase, Fe7C3 and Fe5C2 single carbides. The hyperfine parameters are reported.  相似文献   

18.
The mechanosynthesis of Fe50Zn50 alloy resulted in the formation of the bcc Fe(Zn) solid solution after 20 h of milling. Structural transformations induced by mechanical alloying and heating, and magnetic properties of the powders were studied by Mössbauer spectroscopy, X-ray diffraction, Faraday balance and vibrating sample magnetometry techniques. All alloys studied exhibit strong magnetic ordering with Curie temperatures close to 900 K. Room temperature Mössbauer measurements revealed distinguished magnetic environments in the samples. The decrease of coercivity with prolonged milling time was attributed to the reduction or averaging of local magnetic anisotropies.  相似文献   

19.
The properties of the double iron and tungsten carbide prepared by mechanical alloying technique (MA) from elemental powders are reported. The samples were milled for 1, 3, 5, 10, 15, 20, 25 and 30 h. The alloy progress for each milling time was evaluated by X-ray diffraction (XRD) and 57Fe Mössbauer spectrometry. Once the alloy was consolidated two sorts of paramagnetic sites and a magnetic distribution were detected according to the Mössbauer fitting. The majority doublet could correspond to Fe6W6C ternary carbide as X-ray diffraction suggests, and the other could be Fe3W3C. The hyper fine parameters are reported. Vickers microhardness measurements of 30 h milled sample was conducted at room temperature with a load of 0.245 N for 20 s.  相似文献   

20.

Al-Cu-Fe alloys were prepared by mechanical alloying starting from elemental powders in a high-energy planetary ball mill. Three different alloy compositions with the same c Cu : c Fe ratio of 2:1 but different aluminium contents, that is Al55Cu30Fe15, Al63Cu25Fe12 and Al70Cu20Fe10, were investigated. A sequence of solid-state reactions resulting in quasicrystalline phase formation in Al63Cu25Fe12 proceeds during milling and during annealing of the as-milled powder. These reactions were studied by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. In order to form an aluminium-matrix composite, Al63Cu25Fe12 single-phase quasicrystalline powders were blended with different amounts of aluminium. In an intermediate milling step the powder blend was homogenized. The powders were consolidated by hot extrusion. The bulk samples revealed a homogeneous dispersion of the particles in the matrix but a rather heterogeneous size distribution. The mechanical properties at room temperature were tested by constant-rate compression tests. A rule-of-mixtures dependence of the ultimate strength and the yield strength on the volume fraction of the quasicrystalline particles was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号