首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium oxides are used in a wide variety of technological applications where surface properties play a role. TiO2 surfaces, especially the (110) face of rutile, have become prototypical model systems in the surface science of metal oxides. Reduced TiO2 single crystals are easy to work with experimentally, and their surfaces have been characterized with virtually all surface-science techniques. Recently, TiO2 has also been used to refine computational ab initio approaches and to calculate properties of adsorption systems. Scanning tunneling microscopy (STM) studies have shown that the surface structure of TiO2(110) is more complex than originally anticipated. The reduction state of the sample, i.e. the number and type of bulk defects, as well as the surface treatment (annealing in vacuum vs. annealing in oxygen), can give rise to different structures, such as two different (1×2) reconstructions, a ‘rosette’ overlayer, and crystallographic shear planes. Single point defects can be identified with STM and influence the surface chemistry in a variety of ways; the adsorption of water is discussed as one example. The growth of a large number of different metal overlayers has been studied on TiO2(110). Some of these studies have been instrumental in furthering the understanding of the ‘strong metal support interaction’ between group-VIII metals and TiO2, as well as low-temperature oxidation reactions on TiO2-supported nanoscopic gold clusters. The growth morphology, interfacial oxidation/reduction reaction, thermal stability, and geometric structure of ultra-thin metal overlayers follow general trends where the most critical parameter is the reactivity of the overlayer metal towards oxygen. It has been shown recently that the technologically more relevant TiO2 anatase phase can also be made accessible to surface investigations. Received: 4 March 2002 / Accepted: 20 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +1-504/862-8279, E-mail: diebold@tulane.edu  相似文献   

2.
In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.  相似文献   

3.
In this work photocatalytic properties of TiO2 thin films doped with different amount of Tb have been described. Thin films were prepared by high energy reactive magnetron sputtering process. Comparable photocatalytic activity has been found for all doped TiO2 thin films, while different amounts of Tb dopant (0.4 and 2.6 at. %) results in either an anatase or rutile structure. It was found that the terbium dopant incorporated into TiO2 was also responsible for the amount of hydroxyl groups and water particles adsorbed on the thin film surfaces and thus photocatalytic activity was few times higher in comparison with results collected for undoped TiO2 thin films.  相似文献   

4.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

5.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

6.
Structure of ceramics obtained by the plasma spray deposition of spherical TiO2 powders has been investigated. An electron microscopy study of the surfaces and cross sections of particles in the initial powder and of the deposited ceramic coatings was performed. X-ray diffraction and Raman scattering data proved that the coatings were mainly structured as rutile. In addition, Raman and X-ray diffraction data have revealed an amorphous phase, an anatase phase, and non-stoichiometric phases Ti8O15, Ti10O19, Ti7O13, etc. being present in the coatings. The observed suppression of (011) and (111) XRD peaks and an increased intensity of (110) peak are indicative of a predominant orientation of grains in the synthesized ceramics. Mechanisms of formation of the complex coating structure are discussed.  相似文献   

7.
通过高分辨的扫描隧道显微术研究并比较了金红石型TiO2(110)-(1×1)和锐钛矿型TiO2(001)-(1×4)两种表面的活性位点. 在金红石型TiO2(110)-(1×1)表面, 观察到氧空位缺陷是O2和CO2分子的活性吸附位点,而五配位的Ti原子是水分子和甲醇分子的光催化反应活性位点.在锐钛矿型TiO2(001)-(1×4)表面,观察到完全氧化的表面,Ti原子更可能是六配位的,H2O和O2分子均不易在这些Ti原子上吸附.经还原后表面出现富Ti的缺陷位点, 这些缺陷位点对H2O和O2分子表现出明显的活性. 锐钛矿型TiO2(001)-(1×4)表面的吸附和反应活性并不具有很高的活性,某种程度上其表现出的活性似乎低于金红石型TiO2(110)-(1×1)表面.  相似文献   

8.
The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation–condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.  相似文献   

9.
The structural and electronic properties of the neutral and positively charged oxygen vacancies (F and F+ centres) in the bulk and on the (001) surfaces of SrTiO3 crystal are examined within the hybrid Hartree-Fock and density functional theory (HF-DFT) method based upon the linear combination of atomic orbital (LCAO) approach. A comparison of the formation energy for surface and bulk defects indicates a perceptible propensity for the segregation of neutral and charged vacancies to both SrO and TiO2 surface terminations with a preference in the latter case which is important for interpretation of space charge effects at ceramic interfaces. It is found that the vacancies reveal more shallow energy levels in the band gap on surfaces rather than in the bulk, in particular, on the TiO2 surface. The charged F+ centre has significantly deeper energy levels both in bulk and on the surfaces, as compared with the neutral F centre.  相似文献   

10.
TiO2 nanoparticles with enhanced solid solution of Cr up to 16 wt% in polymorphs of rutile, anatase, brookite, α-PbO2-type, and occasionally baddeleyite-type were synthesized via pulse laser ablation on ceramic TiO2 target dissolved with Cr2O3 or clamped Cr/Ti plates in air. Analytical electron microscopic observations indicated these nanocondensates have prevalent crystallographic shear (CS) along specific planes to form superstructures. The rutile type typically shows (100) and (010) CS besides the conventional ones rotating about the [111] zone axis as reported for ambient samples. The CS planes are parallel to (001) for anatase, (001) and ([`1] \overline{1} 10) for brookite, whereas (001) and {1[`3] \overline{3} 1} for the α-PbO2-type TiO2 with varied extent of Cr dissolution. Surface modification, as a result of Cr dissolution and/or internal stress, was observed for all the polymorphs.  相似文献   

11.
Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.  相似文献   

12.
Heterogeneous photo-Fenton SiO2/Fe3O4/C@TiO2 (SFCT) catalyst with a core-multishell structure and a diameter of about 550 nm was successfully prepared and was characterized by scanning electron microscopy (SEM), TEM, XRD, Raman, and Fourier transform infrared (FT-IR). The results illustrated that anatase TiO2 coexisted with rutile TiO2, in which the anatase phase was the main crystal phase. In addition, the catalytic activity of SFCT catalyst had been evaluated in the catalytic degradation on p-nitrophenol (PNP). The influence factors on the PNP degradation, including SFCT component ratio (m SFC/ m TiO2), H2O2 dosage, solution pH, and PNP concentration, had been investigated. And the contrast experiments about the photo-Fenton catalytic mechanism revealed that the SFCT-2 catalyst possessed a superior activity in the neutral environment due to the optimal activity matching between Fe3O4 and TiO2, and it exhibited the stable catalytic performance after five successive recycles. Therefore, the SFCT-2 catalyst had a promising application for the photo-Fenton degradation of organic contaminant.  相似文献   

13.
Single-crystal (100) and (001) TiO2 rutile substrates have been implanted with 40 keV Fe+ at room temperature with high doses in the range of (0.5–1.5) × 1017 ions/cm2. A ferromagnetic resonance (FMR) signal has been observed for all samples with the intensity and the out-of-plane anisotropy increasing with the implantation dose. The FMR signal has been related to the formation of a percolated metal layer consisting of close-packed iron nanoparticles in the implanted region of TiO2 substrate. Electron spin resonance (ESR) signal of paramagnetic Fe3+ ions substituting Ti4+ positions in the TiO2 rutile structure has been also observed. The dependences of FMR resonance fields on the DC magnetic field orientation reveal a strong in-plane anisotropy for both (100) and (001) substrate planes. An origin of the in-plane anisotropy of FMR signal is attributed to the textured growth of the iron nanoparticles. As result of the nanoparticle growth aligned with respect to the structure of the rutile host, the in-plane magnetic anisotropy of the samples reflects the symmetry of the crystal structure of the TiO2 substrates. Crystallographic directions of the preferential growth of iron nanoparticles have been determined by computer modeling of anisotropic ESR signal of substitutional Fe3+ ions.  相似文献   

14.
In this work, the influence of Tb-doping on structure, and especially hardness of nanocrystalline TiO2 thin films, has been described. Thin films were formed by a high-energy reactive magnetron sputtering process in a pure oxygen atmosphere. Undoped TiO2-matrix and TiO2:Tb (2 at. % and 2.6 at. %) thin films, had rutile structure with crystallite sizes below 10 nm. The high-energy process produces nanocrystalline, homogenous films with a dense and close packed structure, that were confirmed by X-ray diffraction patterns and micrographs from a scanning electron microscope. Investigation of thin film hardness was performed with the aid of a nanoindentation technique. Results of measurements have shown that the hardness of all manufactured nanocrystalline films is above 10 GPa. In the case of undoped TiO2 matrix, the highest hardness value was obtained (14.3 GPa), while doping with terbium results in hardness decreasing down to 12.7 GPa and 10.8 GPa for TiO2:(2 at. % Tb) and TiO2:(2.6 at. % Tb) thin films, respectively. Incorporation of terbium into TiO2-matrix also allows modification of the elastic properties of the films.  相似文献   

15.
A series of thin films made with TiO2 nanoparticles with a varied anatase/rutile phase ratio is prepared on conducting glass substrates using a spin-coating method. The structure, morphology, and optical properties of TiO2 nanopowders and thin films fabricated are studied using powder X-ray diffraction, scanning electron microscopy, and optical spectroscopy. The TiO2 nanostructured films created are used as photoelectrodes for the fabrication of perovskite solar cells (PSCs). The photovoltaic characteristics of PSCs under AM1.5 light illumination (1000 W/m2) under ambient conditions are studied. It is shown that the best efficiency of solar-to-electrical energy conversion, namely, 9.3%, is obtained for the PSC with a photoelectrode based on a TiO2 film with an anatase/rutile mixed phase ratio of 86/14%.  相似文献   

16.
Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl3 alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl3 alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.  相似文献   

17.
Anatase TiO2 nanoparticles were prepared by a simple sol-gel method at moderate temperature. X-ray powder diffraction (XRD) and Raman spectroscopy revealed the exclusive presence of anatase TiO2 without impurities such as rutile or brookite TiO2. Thermogravimetric analysis confirmed the formation of TiO2 at about 400 °C. Particle size of about 20 nm observed by transmission electron microscopy matches well with the dimension of crystallites calculated from XRD. The electrochemical tests of the sol-gel-prepared anatase TiO2 show promising results as electrode for lithium-ion batteries with a stable specific capacity of 174 mAh g?1 after 30 cycles at C/10 rate. The results show that improvement of the electrochemical properties of TiO2 to reach the performance required for use as an electrode for lithium-ion batteries requires not only nanosized porous particles but also a morphology that prevents the self-aggregation of the particles during cycling.  相似文献   

18.
TiO2 nanotubes (NTs) were prepared by low-temperature chemical synthesis using anatase TiO2 particles with different crystallite sizes in a NaOH solution followed by water washing and HCl neutralization. The synthesized TiO2 NTs showed diverse morphologies depending on the starting materials. The crystallite size of TiO2 raw materials increased with an increase in annealing temperature, and larger TiO2 NTs, around 31 nm in diameter, were obtained from large raw powder with a crystallite size of 117 nm. X-ray diffraction and Raman spectroscopy revealed that the obtained TiO2 NT exhibited lower crystallinity; however, Raman vibration seems to be more likely than a rutile structure.  相似文献   

19.
A novel method of synthesizing Ti3+-doped TiO2 was proposed. Ti3+-doped TiO2 hollow spheres were prepared with different thickness of carbon shell by using atmospheric pressure plasma jet generated by dual-frequency power sources. The as-synthesized Ti3+-doped TiO2 hollow microspheres were characterized by X-ray diffraction (XRD) pattern, scanning electron microscope (SEM) images, high-resolution transmission electron microscopy (HRTEM) images, Raman spectra, X-ray photoelectron spectroscopy (XPS), and UV–vis spectra. These results indicated that these samples had mixed phases of anatase and rutile and the structure of hollow sphere varied with different thickness of carbon shell. The Ti-O-C chemical bond was the connection between the TiO2 hollow sphere and carbon layer. Amount of Ti3+ ions were found, which were accompanied with the formation of oxygen vacancies. Meantime, the as-synthesized catalysts also display strong absorption in the visible light region and have a narrow band energy gap. Optical emission spectroscopy (OES) was used to observe different excited species in the discharge area. These results showed that the oxygen content had a significant impact on the number of oxygen vacancies. Finally, the photocatalytic activities of as-prepared samples were evaluated by decomposition of rhodamine B aqueous solution, which showed better photocatalytic activity under UV–vis light irradiation.  相似文献   

20.
Visible light Bi2O3/TiO2 nanocomposites are successfully prepared with different dosages of Bi2O3 by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N2 adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO2 and Bi2O3/TiO2 nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO2, and Bi2O3 is extremely dispersive on the surface of TiO2 nanoparticles. The incorporation of Bi2O3 in TiO2 leads to the spectral response of TiO2 in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi2O3/TiO2 nanocomposites are superior than that of pure TiO2 which is ascribed to the efficient charge separation and transfer across the Bi2O3/TiO2 junction. Bi2O3/TiO2 nanocomposite (20 mg) loaded with 0.25 of Bi2O3 dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi2O3 and TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号