共查询到20条相似文献,搜索用时 0 毫秒
1.
研究将激光感生击穿光谱技术用于元素定量分析的可行性。利用Nd∶YAG激光器发出的激光与一个大气压下的空气相互作用产生激光等离子体,等离子体的光经单色仪分光后转化为电信号进入计算机,存储了600~800nm的等离子体光谱数据。利用自由定标模型对等离子体进行了分析。在延迟时间8μs、采样门宽0.4μs时,利用二维波尔兹曼平面得到了大气等离子体处于局部热平衡时的温度(1.62×10K)。在假设空气全部由N和O组成的条件下由自由定标模型得到了空气中氧的含量(20.75%)和氮的含量(79.25%)。试验结果与实际吻合得很好。实验证实了用激光感生击穿光谱对大气进行定量分析是可行的,为大气污染监测研究和试验工作奠定了基础。 相似文献
2.
Yong Zhang Yun-Hai Jia Jin-Wen Chen Xue-Jing Shen Lei Zhao Chun Yang Yong-Yan Chen Yong-Hui Zhang Peng-Cheng Han 《Frontiers of Physics》2012,7(6):714-720
Lens-to-sample distances, delay time, atmospheric condition, laser pulse energy, etc. had obvious effects on the analytical performance of laser-induced breakdown spectroscopy. In this paper, these parameters are investigated in greater detail and we will explain how they have influences on the analytical performance. The results show that the focal plane under the sample surface can improve precision and detection limit, and the delay time should be decided according to sensitivity and accuracy. Spectral line intensity is stronger in argon than helium, nitrogen and air gas environment. Pulse energy should exceed energy threshold (about 50 mJ) which can generate plasma, and the energy should not exceed about 300 mJ to avoid plasma shielding. Under optimum parameters, concentration relative standard deviation of C, Si, Mn, P, S, Ni, and Cr for low-alloyed steel (sample number 11278) which were measured 11 times is 2.37%, 2.18%, 2.23%, 7.8%, 9.34%, 1.92%, and 2.13%, respectively. And the detection limit of C, Si, Mn, P, S, Ni, and Cr for pure steel is 0.0045%, 0.0072%, 0.0069%, 0.0027%, 0.0024%, 0.0047%, and 0.0024%, respectively. 相似文献
3.
Yang-Ting Fu Wei-Lun Gu Zong-Yu Hou Sher Afgan Muhammed Tian-Qi Li Yun Wang Zhe Wang 《Frontiers of Physics》2021,16(2):22502
Relatively large measurement uncertainty severely hindered wide application for laser-induced breakdown spectroscopy (LIBS), therefore it is of great importance to understand the mechanism of signal uncertainty generation, including initiation and propagation. It has been found that the fluctuation of plasma morphology was the main reason for signal uncertainty. However, it still remains unclear what mechanism leads to laser-induced plasma morphology fluctuation. In the present work, we employed three fast-imaging cameras to capture three successive plasma images from a same laser-induced Titanium alloy plasma, which enables us to understand more clearly of the plasma evolution process especially for the early plasma evolution stage when plasma and surrounding gases interact drastically. Seen from the images, the plasma experienced an increasing morphological fluctuation as delay time increased, transforming from a “stable plasma” before the delay time of 100 ns to a “fluctuating plasma” after the delay time of 300 ns. Notably, the frontier part of plasma showed a significant downward motion from the delay time of 150 ns to 200 ns and crashed with the lower part of the plasma, making the plasma flatter and later even splitting the plasma into two parts, which was considered as a critical process for the transformation of “stable plasma” to “unstable plasma”. By calculating the correlation coefficient of plasma image pairs at successive delay times, it was found that the higher the similarity between two plasma at early stage, the more similar at later stage; this implied that the tiny plasma fluctuation earlier than the critical delay time (150–200 ns) was amplified, causing a large plasma fluctuation at the later stage as well as LIBS measurement uncertainty. The initiation of slight fluctuation was linked with Rayleigh–Taylor Instability (RTI) due to the drastic material interpenetration at the plasma-ambient gas interface at earlier stage (before 50 ns). That is, the uncertainty generation of LIBS was proposed as: plasma morphology fluctuation was inevitably trigged by RTI at the early stage and the tiny fluctuation was amplified by the back pressed downward process of plasma frontier material, leading to severe morphology fluctuation as well as LIBS signal uncertainty. 相似文献
4.
We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 µs, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm-3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs. 相似文献
5.
The mechanisms involved in signal enhancement and persistence of the plasma in double-pulse laser-induced breakdown spectroscopy are investigated, and their implications to improving figures of merit for bulk and trace analytes in sample are discussed. For double-pulse laser-induced breakdown spectroscopy, 1064 nm neodymium YAG laser is used for ablation and 10.6 µm transversely excited atmospheric carbon dioxide laser in near-collinear geometry is used for reheating. Significant improvement in signal detection and sensitivity of both bulk and trace analytes using double-pulse laser-induced breakdown spectroscopy as compared to conventional single-pulse laser-induced breakdown spectroscopy are observed. Using double-pulse laser-induced breakdown spectroscopy in near-collinear geometry, Cu and Fe as bulk and trace analytes, respectively, in brass sample, showed 5 and 6 times improvement in persistence of the spectral emission. Temporal and time-integrated studies show that ionic lines are significantly enhanced compared to neutral lines. Plasma characterization employing spectroscopic methods showed significant enhancement in plasma temperature resulting in higher signal as well as increased plasma persistence of the species studied. 相似文献
6.
A review of the methods of signal enhancement in laser-induced breakdown spectroscopy (LIBS) is presented. Conventional LIBS suffers from disadvantages of low sensitivity and high limits of detection compared with other analytical techniques, such as inductively coupled plasma mass spectrometry. During the last two decades, various methods have been applied to LIBS in order to realize highly quantitative and qualitative analysis. Current approaches include double-pulse excitation, spatial or magnetic confinement, spark discharge, etc. Different configurations of experimental setups and conditions are suggested for the realization of these improved techniques, while various parameters influence significantly on the enhancement effect. With the aim to study the laser ablation process and characterize the effectiveness of each method, several parameters such as plasma volume and emission intensity are reviewed. Several suggestions are proposed to explain the mechanism of each enhancement method. These modified techniques have been applied on various materials and fields. 相似文献
7.
8.
Yong Zhang Yun-Hai Jia Chun Yang Dong-Ling Li Jia Liu Yong-Yan Chen Ying Liu Yi-Xiang Duan 《Frontiers of Physics》2016,11(6):115205
Grade assessment of steel is generally performed via the metallographic method, which is timeconsuming and is not able to provide the elemental distribution information. In this paper, we present a method to measure the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy (LIBS). The measurement is performed in two basic steps: steel samples are polished using metallographic sand paper and the Al2O3 inclusion number and size distribution in a marked area are observed using scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) for further LIBS scanning analysis. The threshold intensity that distinguishes soluble aluminum and insoluble aluminum inclusions is determined using LIBS combined with the SEM/EDS statistical data. Carbon steel (the sample number is S9256) and bearing steel (the sample number is GCr15) are analyzed in scanning mode, and the number of Al2O3 inclusions in different size ranges is obtained from the statistical information derived from the Al2O3 size calibration curve. According to heavy and thin series for globular oxide inclusions grade assessment, the method we propose is comparable to the traditional metallographic method in terms of accuracy; however, the process is simplified and the measurement speed is significantly improved. 相似文献
9.
Our recent work on the detection of explosives by laser-induced breakdown spectroscopy (LIBS) is reviewed in this paper. We have studied the physical mechanism of laser-induced plasma of an organic explosive, TNT. The LIBS spectra of TNT under single-photon excitation are simulated using MATLAB. The variations of the atomic emission lines intensities of carbon, hydrogen, oxygen, and nitrogen versus the plasma temperature are simulated too. We also investigate the time-resolved LIBS spectra of a common inorganic explosive, black powder, in two kinds of surrounding atmospheres, air and argon, and find that the maximum value of the O atomic emission line SBR of black powder occurs at a gate delay of 596 ns. Another focus of our work is on using chemometic methods such as principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to distinguish the organic explosives from organic materials such as plastics. A PLS-DA model for classification is built. TNT and seven types of plastics are chosen as samples to test the model. The experimental results demonstrate that LIBS coupled with the chemometric techniques has the capacity to discriminate organic explosive from plastics. 相似文献
10.
为了表征激光诱导等离子体的定量特征参数,提出了一种谱线自吸收量化的方法,通过获得分析元素谱线的半高全宽来量化谱线自吸收程度,进而得到等离子体的特征参数,包括电子温度、元素含量比以及辐射物质的绝对数密度.与传统激光诱导击穿光谱定量分析方法相比,新方法由于计算过程与谱线强度弱相关,所以分析结果基本不受自吸收效应的影响,同时也无需额外的光谱效率校准.基于铝锂合金的实验结果表明,该方法能够实现精确的相对定量分析和等离子体的特性诊断. 相似文献
11.
为了消除在激光诱导击穿光谱(LIBS)信号检测时等离子体中强的轫致电子辐射对光电倍增管和前置信号放大器造成的不良影响,提高信号检测灵敏度,设计了一种基于CR110的门控端窗光电倍增管并用于LIBS中的微弱信号检测。该门控光电倍增管与前置信号放大器组合运用既可以成功抑制激光等离子体中强的轫致电子辐射的背景干扰,又可以进一步放大微弱的原子辐射信号,提高光谱分析的灵敏度。用LIBS分析铝合金标样中的微量铬元素,采用该门控光电倍增管时其检出限可以达到5.55 ppm,与采用普通光电倍增管的相比改善了近6倍,显示出该门控光电倍增管在时间分辨信号检测领域良好的应用效果。 相似文献
12.
13.
Xiao-Lan Yu 《应用光谱学评论》2017,52(7):605-622
Bearing the merits of rapid, minimally destructive, and simultaneous multi-element analyses, laser-induced breakdown spectroscopy (LIBS) shows its unique advantages in quantitative analyses of lead, cadmium, and hexavalent chromium in plant materials. However, the greatest challenge LIBS must confront is calibration. Various methods for calibration are proposed and put into effect; nevertheless, limits of detection acquired by LIBS are not acceptable when they are compared with the maximum residue limits drawn up by governments, and LIBS's performances in quantitative analyses are to be improved. This review summarizes recent studies of analyzing lead, cadmium, and hexavalent chromium in plant materials quantitatively by LIBS; weighs the strengths and weaknesses of their calibration methods; and recommends the combination of matrix-matched standards based on spiked sample materials and internal standard as well as chemometrics in complicated situations for calibration in LIBS. Selecting the emission line of the analyte, sample enrichment and signal enhancement are measures that this review puts forward to improve the performances of LIBS in calibration. These quantitative analyses of lead, cadmium, and hexavalent chromium in plant materials by LIBS provide an opportunity to be utilized in mapping distributions and remediation for soil and water, as well as supervision for agricultural products safety and pollution treatments. 相似文献
14.
Zhe Wang Ting-Bi Yuan Siu-Lung Lui Zong-Yu Hou Xiong-Wei Li Zheng Li Wei-Dou Ni 《Frontiers of Physics》2012,7(6):708-713
Three major elements, carbon, hydrogen, and nitrogen, in twenty-four bituminous coal samples, were measured by laser-induced breakdown spectroscopy. Argon and helium were applied as ambient gas to enhance the signals and eliminate the interference of nitrogen from surrounding air. The relative standard deviation of the related emission lines and the performance in the partial least squares (PLS) modeling were compared for different ambient environments. The results showed that argon not only improved the intensity, but also reduced signal fluctuation. The PLS model also had the optimal performance in multi-element analysis using argon as ambient gas. The root mean square error of prediction of carbon concentration decreased from 4.25% in air to 3.49% in argon, while the average relative error reduced from 4.96% to 2.98%. Hydrogen line demonstrated similar improvement. Yet, the nitrogen lines were too weak to be detected even in an argon environment which suggested the nitrogen signal measured in air come from the breakdown of nitrogen molecules in the atmosphere. 相似文献
15.
激光诱导击穿光谱(LIBS)在植物样品上面的应用是一个较新的课题. 为将LIBS技术能实际应用于与食品安全相关的领域,实验中对三种真空冻干水果样品进行了初步LIBS实验研究,鉴别了其LIBS光谱,并选取典型光谱线,运用统计学方法分析比较了三种水果中Ca,Na,K,Fe,Al,Mg六种元素含量的差别. 实验结果表明,苹果中Na的含量最高,Ca的含量最低,三种水果样品中的K,Fe,Mg等元素含量也都有差异. 实验结果还表明LIBS技术是一种检测、对比植物样品中微量元素含量的有效手段.
关键词:
激光诱导击穿光谱
等离子体
植物样品
微量元素 相似文献
16.
M.P. Mateo 《Applied Surface Science》2009,255(10):5172-5176
The study of pigments which are found in the works of art is one of the most important tasks in the examination of historic, artistic and archaeological materials since it can provide information about their source, the pictorial technique used or the presence of restoration works.In some studies, the historical, artistic and technical characterization of the artefact is not the final goal but its restoration. In those cases, the knowledge about the chemical composition inferred from the analysis of the artwork is crucial for conservators and restorers in order to ensure that the same pigments that were used in the original work are employed for the restoration.In this work, the analytical characterization of a range of different pigments commonly used in art has been carried out using laser-induced plasma (LIBS) and attenuated total reflectance (ATR)-FTIR spectroscopy. The main purpose of this study is to provide a preliminary database of LIBS and ATR-FTIR spectra in order to supply both elemental and molecular information, respectively. 相似文献
17.
为研究煤质特性对激光等离子体的影响,选取8种代表性煤样为实验对象,首先对煤样进行了元素分析和工业分析,并通过实验研究激光与不同煤样之间的相互作用,分析了水分、灰分等对激光等离子体的影响。试验结果表明,煤化程度不同的煤呈现出不同的等离子体时间谱;在等离子体形成的初期,时间谱均呈上升趋势(<1μs),随着等离子体信号的衰减,曲线呈单调下降趋势(约1μs后),煤化程度高的煤种在激光作用约2μs之后发生二次电离;在相同实验条件下,不同煤种的等离子体温度不同,煤化程度越高等离子体温度越高。 相似文献
18.
The high dependence of polarization resolved laser-induced breakdown spectroscopy on experimental conditions 下载免费PDF全文
It is shown that the continuum emission produced by an Al alloy ablated by femtosecond laser pulses is much more polarized than the characteristic lines of elements. A Glan-Thomson polarizer is used in the laser-induced breakdown spectroscopy experiment to investigate the polarization effect. The use of the polarizer at its minimal transmission increases the signal-to-noise ratio. The effects of angle of detection, focal position, and pulse energy on the signal-to-noise ratio are also studied. 相似文献
19.
20.
Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signalto-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed. 相似文献