首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We review the properties of Ni-based superconductors which contain Ni2X2 (X = As, P, Bi, Si, Ge, B) planes, a common structural element found also in the recently discovered FeAs superconductors. Strong evidence for the fully gapped nature of the superconducting state has come from field dependent thermal conductivity results on BaNi2As2. Coupled with the lack of magnetism, the majority of evidence suggests that the Ni-based compounds are conventional electron–phonon mediated superconductors. However, the increase in Tc in LaNiAsO with doping is anomalous, and mimics the behavior in LaFeAsO. Furthermore, comparisons of the properties of Ni- and Fe-based systems show many similarities, particularly with regards to structure–property relationships. This suggests a deeper connection between the physics of the FeAs superconductors and the related Ni-based systems which deserves further investigation.  相似文献   

2.
We present a review of photoexcited quasiparticle dynamics of cuprate and pnictide high‐temperature superconductors in regimes (temperature, doping) where different phases such as superconductivity, spin‐density‐wave (SDW) and pseudogap phases coexist or compete with one another. We start with the overdoped cuprate superconductor Y1–xCax Ba2Cu3O7–δ, where the superconducting gap and pseudogap coexist in the superconducting state. In another cuprate Tl2Ba2Ca2Cu3Oy, we ob‐ serve a competition between SDW and superconducting orders deep in the superconducting state. Finally, in the underdoped iron pnictide superconductor (Ba,K)Fe2As2, SDW order forms at 85 K, followed by superconductivity at 28 K. We also find the emergence of a normal‐state order that suppresses SDW at a temperature T * ~ 60 K and argue that this normal‐state order is a precursor to superconductivity. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The ESR of Gd in CeRu2 and LaRu2 has been observed in the normal and superconducting state. The temperature dependence of the linewidth in the superconducting state follows a trend expected from NMR measurements in superconductors.  相似文献   

4.
We investigate the spin Hall magnetoresistance (SMR) in niobium (Nb) attached to Y3Fe5O12 near the superconducting critical temperature (Tc) of Nb. The SMR vanishes after cooling the sample below Tc, and recovers if the temperature is raised. When a magnetic field larger than the critical field of Nb is applied, the SMR re‐emerges with an enhanced magnitude even if the temperature is below Tc. The experimental results demonstrate that the SMR could be completely suppressed by the coupling between superconducting condensation and spin–orbit interaction in superconductors. In addition to the fundamental physics on the charge–spin interactions in superconductors, our work adds a different dimension to superconducting spintronics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
A comparative local structure study of pnictide superconductors Ca0.82La0.18FeAs2 (112-type, Tc∼ 40 K) and Ba0.64K0.36Fe2As2 (122-type, Tc∼ 37 K), using room temperature x-ray total scattering measurements is reported. The Fe–As superconducting active layer is found to be globally similar in both the systems consisting of edge-sharing FeAs4/4 tetrahedra as in all the iron-pnictide superconductors discovered so far. Although optimally superconducting, the active layer in these compounds is found to sustain a large local inhomogeneity. These results thus imply that a nanoscopic manipulation of the Fe–As active layer, rather than its isotropic structural tuning, is the key parameter to control the superconducting properties of the iron-based systems.  相似文献   

6.
The stability of dissipative states of a Bi2Sr2CaCu2O8 applied superconducting composite cooled by liquid helium or hydrogen with continuously increasing current-voltage characteristics described by a power equation has been studied. It has been shown that, under intensive cooling conditions, special conditions of thermal stabilization can exist for applied superconducting materials (technical superconductors) if the nonlinear temperature dependences of critical current density and specific resistance of the stabilizing matrix are taken into account. First, the minimum currents of existence and propagation of a normal zone can be absent. Second, the intensive cooling of a technical superconductor substantially increases the range of stable currents in the diapason of supercritical currents. Third, during the irreversible propagation of the thermal instability, the temperature of a technical superconductor can increase under conditions close to adiabatic, despite cooling by liquid coolant. These effects should be taken into account upon determining the conditions for overheating a technical superconductor. The numerical experiments have been compared with the results that follow from the thermal stabilization theory of combined superconductors, which assumes a linear temperature dependence of critical current density of a superconductor and a step-wise transition from the superconducting to normal state.  相似文献   

7.
The attenuation and velocity of longitudinal waves has been measured in superconducting and normal LaAl2 in the frequency range from 15 to 225 MHz. Both in the superconducting and in the normal state an unusually large damping has been found superimposed on the relatively small attenuation due to the well known electron-phonon interaction. On cooling into the superconducting state the attenuation starts to drop only at temperatures well below Tc and — as in insulating glasses — it rises again below 0.8 K. In our view this indicates that two-level systems similar to the ones found in amorphous superconductors may be present in our crystalline LaAl2 sample and are responsible for the observed acoustic anomalies.  相似文献   

8.

Copper-oxide (cuprate) high-temperature superconductors are doped Mott insulators. The undoped parent compounds are antiferromagnetic insulators, and superconductivity occurs only when an appropriate number of charge carriers (electrons or holes) are introduced by doping. All cuprate materials contain CuO2 planes (Figure 1a) in their crystal structure; the doped carriers are believed to go into these CuO2 planes, which are responsible for high-temperature superconductivity. High-temperature superconductors are characterized by their unusual physical properties, both in the superconducting state (below the superconducting transition temperature Tc) and in the normal state (above Tc). Since the discovery of high-temperature superconductivity in 1986 [1], these unusual physical properties and the mechanism of superconductivity have been prominent issues in condensed matter physics [2].  相似文献   

9.
A number of theoretical models have been developed to explain the unexpected high temperature superconductivity in La-Me-Cu-oxides (Me=Ba, Sr) and Y-Ba-Cu-oxides. Some of these models invoke charge fluctuations on the copper ions in the superconductors between a 2+ and a 3+ state. In order to test these possibilities we have measured the Cu–2p 3/2-core level spectra of NaCuO2 in which the copper ion is in a 3+ state and compared it with the core line position in pure CuO and to superconducting oxides. The data strongly suggest, that there is, if any very little Cu3+ in the superconducting compounds present. However, we notice, that in comparison to trivalent and monovalent copper oxides the Cu–2p 3/2 line in CuO and the superconducting oxides is unexpectedly broad. The cause of this large linewidths remains so far unexplained.  相似文献   

10.
The ESR of Gd in the superconducting phase of the type II superconductors CeRu2 and LaOs2 shows a shift for the field for resonance and inhomogeneous broadening of the lineshape. Both effects strongly depend on the three different microwave frequencies (resp. magnetic fields). The broadening of max. 800 G is attributed to a non resolved finestructure splitting. The local field distribution in vortex state of these type II superconductors is less than 100 G and is the main contribution for shift of the field for resonance. In addition ESR results of Gd and Eu doped into La are discussed forT >T c. The comparison of depression of the superconducting transition temperature and exchange spin-flip scattering rate determined from ESR shows a perfect agreement.  相似文献   

11.
The ESR of Gd in the superconducting phase of the type II superconductors CeRu2 and LaOs2 shows a shift for the field for resonance and inhomogeneous broadening of the lineshape. Both effects strongly depend on the three different microwave frequencies (resp. magnetic fields). The broadening of max. 800 G is attributed to a non resolved finestructure splitting. The local field distribution in vortex state of these type II superconductors is less than 100 G and is the main contribution for shift of the field for resonance. In addition ESR results of Gd and Eu doped into La are discussed forT >T c. The comparison of depression of the superconducting transition temperature and exchange spin-flip scattering rate determined from ESR shows a perfect agreement.  相似文献   

12.
The character of temperature dependences of the electric conductivity of MgB2 granular BCS superconductors at temperatures of ~35–45 K in external magnetic fields H ext of up to ~2 kOe is studied. An increase in the superconducting transition width ΔT c with an increase in Hext is found. The presence of a system of weak links in MgB2-based granular superconductors is established. On the basis of experimental data, MgB2 granular superconductor is assigned to two-level superconducting systems and the H–T phase diagram is constructed.  相似文献   

13.
The normal state properties (the electronic specific heat constant, Debye temperature and electrical resistivity) and superconducting state properties [the superconducting transition temperature, Tc, and the upper critical field at 0 K, Hc2(0)] have been studied in the La3S4-La2S3 system. The superconducting properties and the electronic specific heat constant exhibit the maximum values in the alloy with the lowest sulfur content that does not undergo a low temperature crystallographic transformation. At lower sulfur contents the alloys exhibit a cubic to tetragonal transformation at ~80 K with a serious degradation in their superconducting properties, especially Hc2 (0). These alloys clearly illustrate that materials which are almost but not quite unstable are good superconductors, relative to the more stable compositions.  相似文献   

14.
Muon spin relaxation/rotation (μSR) is a vital technique for probing the superconducting gap structure, pairing symmetry and time reversal symmetry breaking, enabling an understanding of the mechanisms behind the unconventional superconductivity of cuprates and Fe-based high-temperature superconductors, which remain a puzzle. Very recently double layered Fe-based super- conductors having quasi-2D crystal structures and Cr-based superconductors with a quasi-1D structure have drawn considerable attention. Here we present a brief review of the characteristics of a few selected Fe- and Cr-based superconducting materials and highlight some of the major outstanding problems, with an emphasis on the superconducting pairing symmetries of these materials. We focus on μSR studies of the newly discovered superconductors ACa2Fe4As4F2 (A = K, Rb, and Cs), ThFeAsN, and A2Cr3As3 (A = K, Cs), which were used to determine the superconducting gap structures, the presence of spin fluctuations, and to search for time reversal symmetry breaking in the superconducting states. We also briefly discuss the results of μSR investigations of the superconductivity in hole and electron doped BaFe2As2.  相似文献   

15.
HIGH-PRESSURE SYNTHESIS OF MgB2 SUPER-CONDUCTOR WITH Tc ABOVE 39 K   总被引:1,自引:0,他引:1       下载免费PDF全文
We report on the high-pressure synthesis and superconductivity of MgB2 intermetallic compounds. The compounds have been obtained through high-pressure sintering of the mixtures of magnesium and boron fine powders under 5.0 GPa and at ~1000℃ for 30 min. Magnetic measurements using a SQUID magnetometer show the sharp bulk superconducting transition above 39 K; the four-probe dc resistivity measurements indicate the highly-conductive normal state and sharp superconducting transition. The results highlight that high-pressure synthesis would be a promising way to promote the studies of this new kind of intermetallic superconductors.  相似文献   

16.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

17.
The pairing potential distribution over the thickness of superconducting CuO2 layers in cuprate HTSCs is determined within the Ginzburg–Landau (GL) theory using the microscopic justification of this theory by Gor’kov. It is found that the pairing potential in them is significantly suppressed due to the effect of non-superconducting interlayers, which results in a decrease in the critical temperature of these superconductors. The temperature dependences of the effective energy gap and current–voltage (I–V) characteristic of tunnel junctions of the “break junction” type made of these superconductors are calculated.  相似文献   

18.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

19.
Peculiarities of the chemical structure of bulk polycrystalline samples of the high-temperature superconductors Bi2Sr2CaCu2O8, BiSrCaCu2O5.5, BiSrCaCu3O8, and YBa2Cu3O7 ? δ have been investigated in detail at room and superconducting temperatures on an X-ray electron magnetic spectrometer equipped with an attachment for low-temperature studies. It is shown that covalent bonding is formed at a superconducting temperature between copper and oxygen due to Cu2+ ions. Due to the enhancement of the d(Cu)–p(O) hybridization of copper and oxygen electrons in the superconducting state, the d-electron density increases near E F. The occurrence of additional peaks in the O1s and Sr3d (Ba3d) spectra after transition of the system to the superconducting state indicates changes in the nearest environment of O and Sr (Ba) atoms, in particular, the transition of Sr atoms to a higher oxidation state.  相似文献   

20.
The solutions of the Bogoliubov–de Gennes (BdG) equation are usually interpreted as the excitations from the superconducting ground state. This viewpoint is not easily applied to a strongly coupled heterojunction since the ground state changes across the interface and it is not clear how the ground state should be connected across the heterointerface. In this paper, we present a different viewpoint that does not suffer from this conceptual drawback. We show that the BdG equation can be viewed as a ‘one-particle’ wave equation whose eigenstates (including the negative energy states) can be filled up systematically to describe the superconducting state, in much the same way that we fill the eigenstates of the Schrödinger equation to describe normal conductors. The only difference is that we need to start from a special vacuum | V〉, consisting of a full band of down-spin electrons, instead of the usual vacuum devoid of all particles. Any quantity of interest, A (such as the charge density or the current density), can be interpreted as the sum of a ‘vacuum contribution’AV ACdue to the vacuum | V〉 and a one-particle contribution ABdGdue to the filled eigenstates of the BdG equation. This picture is easily applied even to strongly coupled heterojunctions since the vacuum | V〉 is the same on both sides of a heterointerface. As such, we believe it puts the scattering theory of transport for superconductors on a firmer conceptual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号