首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe74B13Si11C2 microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed.Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height  相似文献   

2.
We have studied the effect of thermal treatment on the domain wall dynamics of FeSiB and FeCoMoB microwires. It was shown that annealing in transversal magnetic field increases the domain wall mobility as well as the domain wall velocity. Annealing under the tensile stress hinders the appearance of the monodomain structure but application of tensile stress leads to the magnetic bistability having the domain wall mobility twice higher that in as-cast state. Further increase of the tensile stress reduces the domain wall mobility but the domain wall velocity increases as a result of the decrease of critical propagation field. Annealing of the FeCoMoB microwire by Joule heating leads to introduction of the circular anisotropy that favors the vortex domain wall. Such treatment increases the domain wall mobility as well as the maximum domain wall velocity.  相似文献   

3.
We studied the domain wall (DW) propagation of magnetically-bistable Fe–Co-rich microwires paying attention to the effect of applied and internal stresses. Magnetic field, H, dependences of DW velocity, v, were measured in Co41.7Fe36.4Si10.1B11.8 microwires with metallic nucleus diameters (from 13 μm to 18 μm) and with different ρ-ratio between the metallic nucleus diameter, d, and total microwire diameter, D. DW velocity decreased under the application of stresses. From measured dependences we evaluated DW mobility, S, dependence on the applied stresses. The results obtained for Co41.7Fe36.4Si10.1B11.8 sample show that S decreases with the increasing of applied stresses, σa. The observed dependences manifest that increasing of magnetoelastic anisotropy results in the decreasing of DW mobility and DW velocity  相似文献   

4.
We report on the magnetic behaviour of a novel family of two-magnetic-phase multilayer microwires consisting of: (i) a bistable FeSiB glass-coated amorphous microwire as soft nucleus, and (ii) a polycrystalline CoNi outer microtube as harder layer. Such bi-phase microwires are prepared by combined quenching and drawing plus sputtering and electroplating techniques. The stray field produced by the harder outer layer after premagnetizing it to saturation is used to bias the magnetization reversal process of the soft nucleus via dipolar magnetostatic coupling. A detailed analysis of the asymmetric low-field magnetization reversal process of the soft nucleus is presented together with the study of the fluctuating switching field and its asymmetric behaviour. The study of the domain wall characteristics under the presence of a nucleation coil at one end of the microwire allows us to draw conclusions on the role of the bias field generated by the premagnetized hard outer layer.  相似文献   

5.
The amorphous ferromagnetic glass-coated microwires with positive magnetostriction constant of the metallic core possess the bistable magnetization reversal and the fast domain wall propagation along the microwire axis. These properties and also the magnetization processes in the systems of the microwires are of interest in the magnetic sensing technology, encoding systems and smart composite applications. In this work we present the results of the experimental investigation, simulations and theoretical estimations of the hysteresis process in the systems of the magnetically bistable microwires with different length and positional relationship between them. The location of the short microwires near the long microwire affects the switching fields (external coaxial magnetic field applied for starting of the domain wall propagation along the microwire axis) and the hysteresis process. The changes of these properties are not directly proportional to the value of the shorter microwire shift along the longer one. When the short microwire was placed in the middle of the long one and when the one end of the long microwire coincided with the end of the short one, the two-steps hysteresis loops were observed for both sample orientations: before and after sample rotation on 180°. When the short microwire was placed close to the end of the long microwire (but did not coincide with it) we observed at first the two-steps hysteresis loop and single step behavior for one branch of the hysteresis loop after sample rotation. Moreover, changing of the orientation of the samples results in the shift of the switching field of the shorter microwire when its end was located near the end or coincided with the end of the longer one. This uncommon hysteresis behavior was explained and illustrated using results of the simulations. The values of microwires interaction were also estimated.  相似文献   

6.
In this paper we investigate the role of magneto-crystalline anisotropy on the domain wall (DW) properties of tubular magnetic nanostructures. Based on a theoretical model and micromagnetic simulations, we show that either cubic or uniaxial magneto-crystalline anisotropies have some influence on the domain wall properties (wall size, propagation velocity and energy barrier) and then on the overall magnetization reversal mechanism. Besides the characterization of the transverse and vortex domain wall sizes for different anisotropies, we predict an anisotropy dependent transition between the occurrence of transverse and vortex domain walls in tubular nanowires. We also discuss the dynamics of the vortex DW propagation gradually increasing the uniaxial anisotropy constant and we found that the average velocity is considerably reduced. Our results show that different anisotropies can be considered in real samples in order to manipulate the domain wall behavior and the magnetization reversal process.  相似文献   

7.
Magneto-optical investigations carried out on a Co-rich glass-covered amorphous microwire is presented. The appearance of circular magnetic bistability and the influence of tensile stress and high-frequency electric current on the surface magnetization reversal have been studied. The change of the mechanism of the magnetization reversal induced by the high-frequency electric current is also discussed.  相似文献   

8.
We have studied the effect of thermal treatment on the magnetic domain structure and magnetic reversal process of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. The domain structure and the magnetization reversal of amorphous FeCoMoB microwires reflect the complex stress distribution introduced by the glass coating. Hence, the thickness of radial domain structure decreases with temperature and the temperature dependence of the switching field presents a discontinuous behavior. After nanocrystallization, the domain structure of FeCoMoB microwire is almost constant within the temperature range 10-400 K and the switching field decreases almost linearly with temperature mostly because of the decrease of saturation magnetization.  相似文献   

9.
Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.  相似文献   

10.
An overview of the recent progress and state-of-the-art results in the investigation of the amorphous glass-coated wires with nearly zero magnetostriction is presented. These versatile microwires display enhanced soft magnetic properties, which make them suitable as sensing elements in various sensors for biomedical and automotive applications. Current results on their magnetic characteristics refer to a major refinement of their core-shell magnetic structure by taking into account the interdomain wall and to the thorough analysis of the magnetization within the outer shell. Experimental techniques such as giant magneto-impedance, magneto-resistance, and magneto-optical Kerr effect measurements are employed to prove the outcome of the theoretical calculations. The impact of the magnetic structure of the outer shell on the propagation of domain walls in bistable amorphous wires is analyzed. Very recent results on the magnetization process in nearly zero magnetostrictive amorphous glass-coated wires with submicron dimensions are also reviewed.  相似文献   

11.
张树玲  陈炜晔  张勇 《物理学报》2015,64(16):167501-167501
以直径32 μm的熔体抽拉Co基非晶金属纤维为研究对象, 分析了该纤维不同激励条件下的巨磁阻抗(giant magneto impedance, GMI)效应. 实验结果表明: 这类纤维的GMI效应具有不对称性特点, 即 AGMI (asymmetric GMI)效应. 同时, 发现AGMI效应随激励条件不同而变化, 随交流频率或者激励幅值升高而逐渐增强; 当存在一定偏置电压时, AGMI效应大幅增强. 通过研究纤维的磁化过程, 分析了Co基金属纤维的AGMI效应. 由于Co基熔体抽拉纤维具有螺旋各向异性以及磁滞的存在使得GMI效应具有不对称性, 频率升高或者激励电流幅值增加有利于壳层畴环向磁化, AGMI增强. 当在纤维两端施加偏置电压时, 偏置电流诱发环向磁场增强了环向磁化, AGMI效应提高; 偏置电压较低时磁场响应灵敏度提高, 同时磁化翻转向高场移动, 阻抗线性变化对应的直流磁场区间增大. 这一方面拓宽了GMI传感器工作区间及灵敏度, 另一方面不利于获得更大的磁场响应灵敏度. 10 MHz (5 mA)激励时, 施加1 V强度的偏置电压后, 对应的磁场灵敏度从616 V/T 提高至5687 V/T; 偏置电压为2 V时, 灵敏度降低到4525 V/T. 因此, 可以通过适当提高环向磁场的方法获得大的磁场响应灵敏度及阻抗变化线性区域.  相似文献   

12.
In this paper, we present the giant magneto-impedance (GMI) effect (real part of longitudinal impedance, Z, and of the off-diagonal impedance) and hysteretic magnetic properties of amorphous glass-coated microwires with different compositions possessing nearly zero, positive and negative magnetostriction constant and metallic nucleus diameter ranging between 6 and 16 μm. Enhanced soft magnetic properties (low coercivity of about 4 A/m) and high-GMI effect have been observed in Co-rich microwires with vanishing magnetostriction constant. The magnetic anisotropy field of these microwires depends on the ratio between metallic diameter, d and total microwires diameter, D. Stress-sensitive magnetic properties have been obtained in Fe-rich microwires after stress annealing: hysteresis loop stress-annealed (SA) microwires drastically changes under applied stress. A variety of hysteresis loops with different hysteresis loops can be obtained in Fe-rich microwires changing the conditions (time and/or temperature) of the stress annealing. The obtained results allow us to tailor the microwire magnetic properties for magnetic sensors applications through selection of their composition and/or geometry and by thermal treatment.  相似文献   

13.
The domain wall (DW) velocity above the Walker field drops abruptly with increasing magnetic field, because of the so-called Walker breakdown, where the DW moves with a precessional mode. On applying the higher field, the DW velocity again starts to increase gradually. We report the DW propagation around this local minimum regime in detail, investigated through the time-resolved electrical detection technique, with a magnetic tunnel junction. Just above the Walker field, we succeeded in detecting the precessional motion of the DW in a real-time regime, while a different mode appeared around the local minimum of the DW velocity.  相似文献   

14.
Although we lack clear experimental evidence, apparently out-of-plane magnetized systems are better suited for spintronic applications than the in-plane magnetized ones, mainly due to the smaller current densities required for achieving domain wall motion. [Co/Pt] multilayers belong to the first category of materials, the out-of-plane magnetization orientation arising from the strong perpendicular magnetocrystalline anisotropy. If the magnetization arranges itself out-of-plane narrow Bloch walls occur. In the present paper, both field and current-driven domain wall motion have been investigated for this system, using micromagnetic simulations. Three types of geometries have been taken into account: bulk, thin film and wire, and for all of them a full comparison is done between the effect of the applied field and injected current. The reduction of the system's dimension induces the decrease of the critical field and the critical current, but it does not influence the domain wall displacement mechanism.  相似文献   

15.
The effect of the glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwire has been studied by the switching field distribution technique. The thermoactivated mechanism model is used to describe the thermally activated switching through the complex energy barrier in amorphous FeSiB microwires. Glass removal leads to the increase of the probability of the thermally activated switching pointing to the decrease of the energy barrier.  相似文献   

16.
We deal with the influence of the applied stress on the domain wall velocity in glass-coated magnetic microwires. In general, the domain wall velocity decreases with the applied tensile stress. Four regimes of the domain wall dynamics appear: (1)?diffusion-damped, (2)?a regime with variable domain wall width, (3)?a viscous and (4)?a vortex regime. Detailed analysis of domain wall parameters shows that the structural relaxation plays an important role even at ambient temperatures if high tensile stress is present. At higher fields (viscous regime), the most important damping arises from magnetic relaxation of magnetic moments. Finally, the domain wall velocity steeply increases (reaching a maximum at 7000?m?s(-1)) in the vortex regime and so does the domain wall mobility.  相似文献   

17.
We study field-driven domain wall (DW) motion in nanowires with perpendicular magnetic anisotropy using finite element micromagnetic simulations. Edge roughness is introduced by deforming the finite element mesh, and we vary the correlation length and magnitude of the roughness deformation separately. We observe the Walker breakdown both with and without roughness, with steady DW motion for applied fields below the critical Walker field H(c), and oscillatory motion for larger fields. The value of H(c) is not altered in the presence of roughness. The edge roughness introduces a depinning field. During the transient process of depinning, from the initial configuration to steady DW motion, the DW velocity is significantly reduced in comparison to that for a wire without roughness. The asymptotic DW velocity, on the other hand, is virtually unaffected by the roughness, even though the magnetization reacts to the edge distortions during the entire course of motion, both above and below the Walker breakdown. A moving DW can become pinned again at some later point ('dynamic pinning'). Dynamic pinning is a stochastic process and is observed both for small fields below H(c) and for fields of any strength above H(c). In the latter case, where the DW shows oscillatory motion and the magnetization in the DW rotates in the film plane, pinning can only occur at positions where the DW reverses direction and the instantaneous velocity is zero, i.e., at the beginning or in the middle of a positional oscillation cycle. In our simulations pinning was only observed at the beginnings of cycles, where the magnetization is pointing along the wire. The depinning field depends linearly on the magnitude of the edge roughness. The strongest pinning fields are observed for roughness correlation lengths that match the domain wall width.  相似文献   

18.
The motion of magnetic domain walls in permalloy nanowires is investigated by real-time resistance measurements. The domain wall velocity is measured as a function of the magnetic field in the presence of a current flowing through the nanowire. We show that the current can significantly increase or decrease the domain wall velocity, depending on its direction. These results are understood within a one-dimensional model of the domain wall dynamics which includes the spin transfer torque.  相似文献   

19.
Ni_(50)Mn_(25)Ga_(20)Fe_5 ferromagnetic shape memory alloy microwires with diameters of ~ 30–50 μm and grain sizes of ~ 2–5 μm were prepared by melt-extraction technique. A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress, compositional inhomogeneity,and high-density defects in the as-extracted Ni_(50)Mn_(25)Ga_(20)Fe_5 microwires. The annealed microwires exhibited enhanced atomic ordering degree, narrow thermal hysteresis, and high saturation magnetization under a low magnetic field. As a result, the annealed microwire showed decreased superelastic critical stress, improved reversibility, and a high superelastic strain(1.9%) with a large recovery ratio(96%). This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.  相似文献   

20.
We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号