首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lijun Xu  Ye Xu 《Surface science》2010,604(11-12):887-892
The adsorption and activation of methyl acetate (CH3COOCH3), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C–O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C–O bonds (Ea  2.0 eV for the carbonyl and acetate–methyl bonds; Ea = 1.0 eV for the acetyl–methoxy bond) than to dissociate the C–H bonds to produce enolate (CH2COOCH3; Ea = 0.74 eV) or methylene acetate (CH3COOCH2; Ea = 0.82 eV). The barriers for C–H and C–O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH3COOCH, CH2COOCH2, and CHCOOCH3) based on the Brønsted–Evans–Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH3, whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl–alkoxy C–O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111).  相似文献   

2.
Impurity Cr3+ centers in submicron and nanostructured Al2O3 crystals of different phase compositions at temperatures of 300 and 7.5 K were studied by a luminescent vacuum ultraviolet (VUV) spectroscopy method. Photoluminescence (PL) spectra and the energies of 2E, 4T2, and 4T1 excited states of Cr3+ ion depend on the type of crystalline samples phase. The PL excitation spectrum of R-line in α-Al2O3 nanoscale crystals is formed by intracenter transitions (2.5–5.5 eV region), by charge transfer band (6.9 eV) and by effective formation of impurity-bound excitons (9.0 eV region). Such impurity-bound excitons correspond to O2p→Al3s electron transition in surroundings of an impurity Cr3+ center. The efficiency of impurity-bound excitons formation decreases with the increase of the grain size above 100 nm. The size dependence is noticeably shown in PL excitation spectra in VUV region. Excitons bound to impurity centers do not appear in nanostructured δ+θ-Al2O3 crystals. The effect of the electron excitation multiplication is observed distinctly in nanostrucured α-Al2O3 at an excitation energy above 19 eV (more than 2Eg).  相似文献   

3.
N. Pauly  S. Tougaard 《Surface science》2011,605(15-16):1556-1562
In XPS analysis, surface excitations and excitations originating from the static core hole created during the photoexcitation process are usually neglected. However, both effects significantly reduce the measured peak intensity. In this paper we have calculated these effects. Instead of considering the two effects separately, we introduce a new parameter, namely the Correction Parameter for XPS (or CPXPS) defined as the change in probability for emission of a photoelectron caused by the presence of the surface and the core hole in comparison with the situation where the core hole is neglected and the electron travels the same distance in an infinite medium. The CPXPS calculations are performed within the dielectric response theory by means of the QUEELS-XPS software determining the energy-differential inelastic electron scattering cross-sections for X-ray photoelectron spectroscopy (XPS) including surface and core hole effects. This study has been carried out for electron energies between 300 eV and 3400 eV, for angles to the surface normal between 0° and 60° and for various materials, especially metals, semiconductors and oxides. For geometries and energies normally used in XPS, i.e. for emission angle ≤ 60° and photoelectron energy ≤ 1500 eV, we find that CPXPS values are significantly larger for oxides, (0.55 ? CPXPS ? 0.75) than for metals and semiconductors (0.45 ? CPXPS ? 0.6). We show that this behavior is due to the difference in the wave vector dispersion of the energy loss function. This dispersion has been determined from analysis of REELS and is found to be free electron like (α ? 1) for metals but is substantially smaller (α  0.02–0.05) for materials with a wide band gap. As a result, the group velocity of the valence electrons is very small for oxides with a large band gap. This leads to a reduction in the screening of the core-hole potential before the photoelectron has left the region of interaction and thereby to an increase in the intrinsic excitations caused by the core hole.  相似文献   

4.
A polycrystalline silver surface has been studied by synchrotron radiation photoelectron spectroscopy after deep oxidation by microwave discharge in an O2 atmosphere. Oxidized structures with high oxygen content, AgOx with x > 1, have been found on the silver surface after oxidation at 300–400 K. The line shapes observed in the O1s spectra were decomposed into five components and indicated that complex oxidized species were formed. An analysis of the oxidized structures with binding energies, Еb(O1s), greater than 530 eV pointed to the presence of both Ag–O and O–O bonds. We have carried out a detailed experimental study of the valence band spectra in a wide spectral range (up to 35 eV), which has allowed us to register the multicomponent structure of spectra below Ag4d band. These features were assigned to the formation of Ag–O and O–O bonds composed of molecular (associative) oxygen species. DFT model calculations showed that saturation of the defect oxidized silver surface with oxygen leads to the formation of associative oxygen species, such as superoxides, with electrophilic properties and covalent bonding. The high stability of oxygen-rich silver structures, AgOx, can be explained by the formation of small silver particles during the intensive MW oxidation, which can stabilize such oxygen species.  相似文献   

5.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS have been used to investigate the defects created in Sb doped Ge after irradiation with 2 MeV protons having a fluence of 1×1013 protons/cm2. The results show that proton irradiation resulted in primary hole traps at EV +0.15 and EV +0.30 eV and electron traps at EC ?0.38, EC ?0.32, EC ?0.31, EC ?0.22, EC ?0.20, EC ?0.17, EC ?0.15 and EC ?0.04 eV. Defects observed in this study are compared with those introduced in similar samples after MeV electron irradiation reported earlier. EC ?0.31, EC ?0.17 and EC ?0.04, and EV +0.15 eV were not observed previously in similar samples after high energy irradiation. Results from this study suggest that although similar defects are introduced by electron and proton irradiation, traps introduced by the latter are dose dependent.  相似文献   

6.
Assem Bakry  Ahmed M. El-Naggar 《Optik》2013,124(24):6501-6505
Phosphorus doped hydrogenated amorphous silicon (a-Si:H) films were prepared by decomposition of silane using RF plasma glow discharge. Both DC dark conductivity measurements, and spectrophotometric optical measurements through the range 200–3000 nm were recorded for the prepared films. The DC conductivity activation energy Ea decreased from 0.8 eV for the undoped sample to 0.34 eV for the highest used doping value. The optical energy gap Eg decreased ranging from 1.66 eV to 1.60 eV. The refractive index n, the density of charge carriers N/m* and the plasma frequency ωp showed an opposite behavior, i.e. an increase in value with doping. Fitting the dispersion values to Sellmeier equation led to the determination of the material natural frequency of oscillating particles. A correlation between the changes in these parameters with the doping has been attempted.  相似文献   

7.
The Cr 2p and O 1s binding energy (BE) levels have been calculated by first principles methods for different models of hydroxylated (0001)-Cr2O3 surfaces. Several surface terminations have been considered. The calculations allow us to reproduce the O 1s shifts between O in oxide and OH groups. It is found that two main effects account for the OH binding energy shifts. On the one hand, the increased covalency of the O–H bond with respect to the Cr–O bond, lowers the electronic O (1s and 2p) energy, and in consequence the BE of the core levels (O 1s) are higher. On the other hand, the lower the OH coordination number, the higher the valence and core levels energy, and the lower the BE. Consequently, mono-coordinated hydroxyls have a binding energy near that of O2? in the oxide (ΔBEOH–O = ? 0.2–0.0 eV). Two-fold coordinated hydroxyls have a slightly higher BE (ΔBEOH–O = + 0.3 eV). Three-fold coordinated OH groups have a higher binding energy (ΔBEOH–O = + 0.6?0.7 eV), corresponding to that experimentally measured for OH groups. Finally, water adsorbed above OH groups exhibits a still higher BE (ΔBEHOH–O = + 0.9–1.0 eV). The ΔBE are slightly under-estimated under the initial state approximation, and overestimated under the final state (Z + 1) approximation.  相似文献   

8.
Low energy cluster beam deposition, LECBD, under UHV conditions has been used to generate thin films comprising monodispersed non-IPR fullerenes, Cn, 50 ? n < 60, on pyrolithic graphite surfaces (HOPG). The morphology of the resulting Cn deposits has subsequently been studied by ex situ atomic force microscopy. Deposition experiments were carried out under nominally normal incidence and at hyperthermal incident kinetic energies, E0, varied between 1 and 40 eV. Surface temperatures during deposition, Ts, were varied from 300 K to the desorption onset of ~700 K. Initial sticking of Cn cages is governed by the lateral density of step edges, which act as pinning and nucleation centres for migrating cages. Consequently in the early deposition stages, the surface exhibits large areas of empty terraces, while the step edges themselves are well-decorated. The terraces in turn become decorated by dendritic Cn islands in later deposition stages. Both, the mean size of these 2D islands and the mean distance between nearest islands, δ, scale with the size of the terraces. When increasing the primary kinetic energy, the fractal-like islands become smaller and less dendritic in shape. The mean initial sticking coefficient decays exponentially with increasing E0. The island topography has also been found to depend sensitively on the deposition temperature. Instead of the dendritic/fractal islands generated at room temperature, densely packed islands terminated by smooth rims are observed upon deposition at elevated temperatures. We rationalize our findings in terms of a three step deposition process involving: (i) conversion of perpendicular E0 into hyperthermal surface parallel gliding/sliding motion, (ii) friction–dissipation of this surface-parallel kinetic energy within an (unexpectedly large) mean free path Λ followed by (iii) thermal diffusion. Λ, is observed to scale with E0 and Ts.  相似文献   

9.
Binding energies and decay rates of image potential states at an Ag(001) surface have been investigated with time-resolved two-photon photoemission. For the first four image potential states the binding energies are determined to be 561, 170, 72 and 37 meV with respect to the vacuum level. Lifetimes of the first three states are extracted to be 57, 165 and 380 fs at k = 0. With increasing parallel momentum k the lifetime of the n = 1 state decreases such that the inverse lifetime scales proportional to the kinetic energy within the parallel motion with 34 meV/eV. As light source for the pump-probe photoemission experiments a novel all fiber based femtosecond laser system with a repetition rate of 1.5 MHz has been used.  相似文献   

10.
Optical properties of nanocrystalline, LixV2O5·nH2O films (0<x<22 mol%), are explored in the present work. These films have been produced by the sol–gel technique (colloidal route), which was used for the preparation of high purity and homogeneity films. Optical measurements were carried out using a double-beam spectrophotometer. The optical constants such as refractive index n, the extinction coefficient k, absorption coefficient α, and optical band gap of the films material have been evaluated. The optical absorption coefficient was calculated from the measured normal reflectance, R, and transmittance, T, spectra. The optical spectra of all samples exhibited two distinct regions: at high energy, which suggests a direct forbidden transition with optical gap ranging from 1.75 to 2.0 eV and increases with increase in Li-content. On the other hand a second low-energy band suggests a direct allowed transition with optical gap ranging from 0.40 to 0.42 eV. The width of the localized states (band tail) Ee was also estimated for all samples. Additional calculations applying the real part of the optical dielectric function led to the evaluation of the charge carrier concentration and their effective mass.  相似文献   

11.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

12.
The effect of atomic oxygen adsorption on the structure and electronic properties of monolayer hexagonal boron nitride (h-BN) grown on Ir(111) has been studied using near edge X-ray absorption fine structure spectroscopy (NEXAFS), photoelectron spectroscopy (PES), and low-energy electron diffraction (LEED). It has been shown that the oxidation of the h-BN monolayer occurs through a gradual substitution of N by O in the h-BN lattice. This process leads to the formation of defect sites corresponding to three different types of the B atom environment (BN3 ? xOx with x = 1,2,3). The oxidation of the h-BN monolayer is very different from the case of graphene on Ir(111), where adsorption of atomic oxygen results mainly in the formation of epoxy groups [J. Phys. Chem. C. 115, 9568 (2011)]. A post-annealing of the h-BN monolayer after oxygen exposure results in further destruction of the B–N bonds and formation of a B2O3-like structure.  相似文献   

13.
Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54–160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.  相似文献   

14.
X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (001) surfaces of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals grown by the Bridgman method have been measured and fundamental absorption edges of the ternary bromides have been recorded in the polarized light at 300 K and 80 K. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (001) surfaces of KxRb1?xPb2Br5 (x=0, 0.5, and 1.0) single crystals. Substitution of potassium for rubidium in KxRb1?xPb2Br5 does not cause any changes of binding energy values and shapes of the XPS constituent element core-level spectra. Measurements of the fundamental absorption edges indicate that band gap energy, Eg, increases by about 0.14 and 0.19 eV when temperature decreases from 300 K to 80 K in KPb2Br5 and RbPb2Br5, respectively. Furthermore, there is no dependence of the Eg value for KPb2Br5 upon the light polarization, whilst the band gap energy value for RbPb2Br5 is bigger by 0.03–0.05 eV in the case of E6c compared to those in the cases of E6a and E6b.  相似文献   

15.
Unusual crystal structure of 12CaO·7Al2O3 is composed by a framework of positively charged nanocages, which enable accommodation of various negative ions (and even electrons) inside these cages. Different filling of cages leads to significant changes in electronic structure and as the result in luminescence properties, as well. Luminescence was studied using time-resolved spectroscopy in VUV in the temperature range from 6 to 300 K. Electron loaded samples exhibit UV luminescence band peaked at ~5 eV. The excitation spectrum of this emission has the onset at the energy gap value of 6.8 eV, and its decay is well described with the sum of two exponential functions with life-times of τ1 = 3.7 ns and τ2 = 29 ns, respectively. Its thermal quenching is well approximated by the sum of two Mott-Seitz type curves with the activation energies of 34 meV and 70 meV. Experimental results indicate that this luminescence is possibly due to radiative decay of two singlet self-trapped exciton states, which hole components are localized on two non-equivalent framework oxygens.  相似文献   

16.
N. Pauly  S. Tougaard 《Surface science》2010,604(13-14):1193-1196
In XPS analysis, two effects, which significantly reduce the measured peak intensity, are usually neglected: the core hole left behind in an XPS process which causes “intrinsic” excitations and excitations as the photoelectron pass through the surface region. We have calculated these effects quantitatively for various energies, geometries, and materials. Instead of considering the two effects separately, we introduce a new parameter, namely the correction parameter for XPS or CPXPS, which takes into account both effects. We define this CPXPS as the change in probability for emission of a photoelectron caused by the presence of the surface and the core hole in comparison with the situation where the core hole is neglected and the electron travels the same distance in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS–XPS software determining the energy-differential inelastic electron scattering cross-sections for X-ray photoelectron spectroscopy (XPS) including surface and core hole effects. This study has been carried out for electron energies between 300 eV and 3400 eV, for angles to the surface normal between 0° and 60° and for various materials. We find that the absolute effect is a reduction by 35–45% in peak intensities but that the variation in CPXPS with material, angle and energy are < ± 10% for emission angle ≤ 60° and photoelectron energy ≤ 1500 eV. This implies that when XPS analysis is done using relative intensities, the combined effect of the surface and of the core hole is typically less than ≈ ± 10% for geometries and energies normally used in XPS. In practice, it is however difficult to determine the bare peak intensity without the intrinsic electrons because the two overlap in energy.  相似文献   

17.
The luminescence kinetics of CsI(Tl) exposed to an electron pulse irradiation (Ee = 250 keV, t1/2 = 10 ns, j = 2 ÷ 160 mJ/cm2) has been studied. It has been discovered that the slow emission rise is due to hole Vk–Tl0 recombination luminescence at temperature from 100 to 160 K and electron–VkA recombination, where electrons released from single Tl0 at temperature from 180 to 300 K. The effect of Tl concentration on both processes has been investigated.  相似文献   

18.
In this paper we review the preparation and reaction properties of ordered SmRh surface alloys and SmOx/Rh(1 0 0) model catalyst which have been systematically investigated by low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and temperature desorption spectroscopy (TDS). The growth of Sm on Rh(1 0 0) at room temperature follows the Stranski-Krastanov mode. Thermal treatment of the Sm films on Rh(1 0 0) leads to the formation of ordered SmRh surface alloys. An “inverse” SmOx/Rh(1 0 0) model catalyst is produced under controlled oxidation of the SmRh surface alloy. CO adsorption on the SmRh alloy and SmOx/Rh(1 0 0) surfaces gives rise to five TDS characteristic features originating from different adsorption sites. Both the site blocking of SmOx and the electron transfer between SmOx and Rh substrate significantly affect the CO adsorption. Acetate decomposition on both Rh(1 0 0) and the SmOx/Rh(1 0 0) surfaces are found to undergo two competitive pathways that yields either (i) CO(a) and O(a) or (ii) CO2(g) and H2(g) at high temperature. The reactive desorption of acetic acid on SmOx/Rh(1 0 0) is dramatically different from that on Rh(1 0 0). A rapid decomposition of acetic acid to produce CO(g) and CO2(g) can be observed only on SmOx/Rh(1 0 0), where CO(g) becomes the predominant product at 225 K, indicating a strong promotional effect of SmOx in the selective decomposition of acetate. Finally, we briefly describe the future outlook of research on rare earth oxide/metal model catalysts.  相似文献   

19.
High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, XC of ~82% and are surrounded by a thin layer of SiOx. The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the XC to ~65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ~1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text.  相似文献   

20.
The polycrystalline sample of Na1/2Dy1/2TiO3 ceramic was prepared by a standard high-temperature solid-state reaction technique. X-ray structural analysis confirmed the formation of single-phase (with minor secondary phase) compound in the orthorhombic (distorted tetragonal) crystal system at room temperature. Study of surface morphology by scanning electron microscope exhibits uniform distribution of rectangular/cubical grains with less voids. The elemental composition of the prepared compound was confirmed by energy dispersive X-ray spectroscopy microanalysis. Detailed studies of dielectric properties exhibit a dielectric anomaly at 94 °C suggesting a possible ferroelectric–paraelectric phase transition in the compound. The activation energy (Ea), calculated from the temperature dependence of ac conductivity plot, was found to be small (∼0.1 eV) in low temperature and large (∼0.5 eV) in high temperature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号