首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
近年来,锂金属电池由于具有较高的能量密度而成为储能领域的研究热点。电解液作为锂金属电池的“血液”发挥着至关重要的作用。在传统锂离子电池电解液中,锂金属负极与电解液之间的界面副反应严重并伴随着锂枝晶生长,从而导致安全隐患以及循环寿命缩短等问题。在解决锂金属负极问题上,电解液调控策略具有易操作性和有效性,因而在推动锂金属电池发展方面具有举足轻重的地位。氟代电解液是目前重要的研究方向,氟代电解液在循环过程中能够在电极表面形成富含LiF的固体电解质界面膜(SEI);该界面膜不仅可以有效抑制负极锂枝晶的形成,并且在正极方面能够大幅提高电解液的氧化稳定性,从而提升高电压正极的适配性和锂金属电池的循环稳定性。氟代电解液中氟代溶剂/氟代锂盐的分子结构对电解液的溶剂化结构有重要影响。当氟代溶剂分子中氟原子的位置与数量不同时,氟代溶剂的物理化学性质也会随之发生变化,进而改变了电解液与电极的界面反应性。因此,氟代溶剂能够起到调制SEI膜成分和结构的作用,是决定电池性能的关键因素。本文总结了应用于锂金属电池的主要氟代溶剂,尤其是近几年来发展的新型氟代溶剂;着重介绍了高度氟代的溶剂分子作为局域超浓电解液的稀释剂,以及对溶剂进行精准分子设计得到的部分氟代溶剂等。此外,本文还分析探讨了氟代溶剂分子与电池性能之间的构效关系,展望了构建新型氟代溶剂分子的策略,希望能对电解液溶剂分子的结构设计以及构效关系的评估有一定的启发意义。  相似文献   

2.
程浩然  马征  郭营军  孙春胜  李茜  明军 《电化学》2022,28(11):2219012
通过电解液分解在电极上形成的固体电解质界面(SEI)层被认为是影响电池性能的最重要因素。 然而,我们发现金属离子溶剂化结构也会影响其电极性能,尤其可以阐明许多SEI无法解释的实验现象。基于该综述,本文总结了金属离子溶剂化结构和衍生的金属离子去溶剂化行为的重要性,并建立了相应的界面模型以展示界面行为和电极性能之间的关系,并将其应用于不同的电极和电池体系。我们强调了电极界面离子/分子相互作用对电极性能的影响,该解释与以往基于SEI的解释不同。该综述为理解电池性能和指导电解液设计提供了一个新的视角。  相似文献   

3.
锂金属二次电池具有极高的能量密度,是下一代储能电池的研究热点。然而,金属锂负极在传统碳酸酯电解液1 mol·L?1 LiPF6-EC/DEC(ethylene carbonate/diethyl carbonate)中充放电时,存在严重的枝晶生长和循环效率低下等问题,阻碍了其商业化应用。因此,开发与锂负极兼容的新型电解液体系是目前重要的研究任务。与传统稀溶液相比,高浓度电解液体系具有独有的物化性质和优异的界面相容性,并且能有效抑制锂枝晶生长、显著提升锂负极的循环可逆性,因而格外受到关注。本文综述了高浓度电解液及局部高浓电解液体系的最新研究进展,分析了其溶液化学结构和物化性质,对其与锂负极的界面相容性、枝晶抑制效果、效率提升能力及界面稳定性机制进行了探讨;文章着重介绍了高浓与局部高浓电解液体系在锂金属二次电池中的应用,同时从基础科学研究和应用研究两个层面对高浓电解液和局部高浓电解液存在的主要问题进行了简要分析,并对其未来发展方向进行了展望。  相似文献   

4.
金属锂负极具有极高的理论比容量和极低的氧化还原电位,被认为是二次电池体系中负极材料的最终选择.但在实际应用过程中,不稳定的电极/电解液界面会造成大量的锂枝晶生长,导致容量损失乃至热失控等安全问题.调控锂离子溶剂化结构,可促进有益的固态电解质界面膜(SEI)成膜组分在电极表面优先分解,进而稳定电极界面并可诱导锂离子均匀沉积,是提升液态和准固态金属锂电池电化学性能的重要手段.本文综合评述了近年来从液态到准固态电解质中锂离子溶剂化结构调控的策略和设计原则,探讨了溶剂化结构改变对电极/电解质界面的影响,并对准固态电解质的研究前景进行了展望.  相似文献   

5.
The aprotic Li-O2 battery has attracted considerable interest in recent years because of its high theoretical specific energy that is far greater than that achievable with state-of-the-art Li-ion technologies. To date, most Li-O2 studies, based on a cell configuration with a Li metal anode, aprotic Li+ electrolyte and porous O2 cathode, have focused on O2 reactions at the cathode. However, these reactions might be complicated by the use of Li metal anode. This is because both the electrolyte and O2 (from cathode) can react with the Li metal and some parasitic products could cross over to the cathode and interfere with the O2 reactions occurring therein. In addition, the possibility of dendrite formation on the Li anode, during its multiple plating/stripping cycles, raises serious safety concerns that impede the realization of practical Li-O2 cells. Therefore, solutions to these issues are urgently needed to achieve a reversible and safety Li anode. This review summarizes recent advances in this field and strategies for achieving high performance Li anode for use in aprotic Li-O2 batteries. Topics include alternative counter/reference electrodes, electrolytes and additives, composite protection layers and separators, and advanced experimental techniques for studying the Li anode|electrolyte interface. Future developments in relation to Li anode for aprotic Li-O2 batteries are also discussed.  相似文献   

6.
As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.  相似文献   

7.
梁世硕  康树森  杨东  胡建华 《化学学报》2022,80(9):1264-1268
随着我国新能源产业的快速发展,全固态电池由于其理论上的高能量密度和高安全性受到广泛关注,而硫化物全固态电池具有离子电导率高的优势成为目前的研发热点,但是金属锂负极的锂枝晶生长和与硫化物电解质之间的不稳定性严重阻碍了硫化物全固态电池的研发.本工作在高温150℃下制备了均匀的LiF界面层来抑制金属锂负极/硫化物电解质之间的界面反应和锂枝晶.LiF/Li之间具有较高的界面能,所以可以有效抑制锂枝晶的生长.LiNbO2@LiCoO2//Li6PS5Cl//LiF@Li (LNO@LCO//LPSCl//LiF@Li)全电池0.05 C, 0.1 C, 0.2 C和0.5 C倍率的正极放电克容量分别为138.4 mAh/g, 105.0 mAh/g, 80.3 mAh/g和60.4 mAh/g, 0.05 C循环50周后,正极容量保持率为80.2%.该方法为后续金属锂负极在全固态电池中的应用提供了新的方案.  相似文献   

8.
锂硫电池由于其高能量密度(理论高达2600 Wh/kg)、低成本、环境友好等优点而广受关注. 但是锂硫电池仍存在正极活性物质利用率低、循环性能差等问题. 造成这些问题的主要原因是易溶于有机电解液的中间产物聚硫锂Li2Sn (4≤n≤8)和不溶于有机电解液的硫化锂造成的. 简要介绍了锂硫电池体系的主要问题,并结合本研究小组的研究,对锂硫电池用电解质体系从有机电解液组成、电解液添加剂、聚合物电解质和无机固体电解质等方面进行了详细的综述,最后对电解质的发展前景进行了展望.  相似文献   

9.
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.  相似文献   

10.
11.
12.
关俊  李念武  于乐 《物理化学学报》2021,37(2):2009011-0
金属锂具有极高的比容量(3860 mAh·g?1)和最低的电化学反应电位(相对标准氢电位为?3.040 V),被认为是高能量密度二次电池最具潜力的负极材料。然而金属锂负极界面稳定性差、不可控的枝晶生长、沉积/剥离过程中巨大的体积变化等严重阻碍了金属锂负极的商业化应用。在金属锂表面构建一层物理化学性质稳定的人工界面保护层被认为是解决金属锂负极界面不稳定和枝晶生长,缓解体积膨胀带来的界面波动等一系列问题的有效手段。本综述依据界面传导性质,从离子导通而电子绝缘的人工固态电解质界面(SEI)层、离子/电子混合传导界面、纳米界面钝化层三个部分对人工界面保护层进行了归纳总结。分析了人工界面保护层的物质结构与性能之间的构效关系,探讨了如何提高人工界面保护层的物理化学稳定性、界面离子输运、界面强度与柔韧性、界面兼容性等。最后,指出用于金属锂负极的人工界面保护层目前面临的主要挑战,并对其未来的发展进行了展望。  相似文献   

13.
锂金属是下一代高能量密度二次电池的理想负极材料,然而它的应用仍然受制于较差的循环稳定性。近期,二维氟化界面被广泛用于改善锂金属负极的成核机制、沉积形貌和循环稳定性。本工作通过将体积缩小化的氟化石墨颗粒与锂离子传导网络结合,获得了一种富氟化位点的三维框架结构。实验结果证明此类三维氟化结构可显著提升锂金属负极在不同电流密度和容量下的循环稳定性,且优于二维氟化界面结构。通过本工作的研究,证明了相较于单纯的二维氟化界面,三维锂离子传导网络和富氟化位点的合理结合可以成为一种改进的界面结构用于锂金属负极保护,为高能量密度锂金属电池的负极保护提供了新的设计思路。  相似文献   

14.
In lithium metal batteries, electrolytes containing a high concentration of salts have demonstrated promising cyclability, but their practicality with respect to the cost of materials is yet to be proved. Here we report a fluorinated aromatic compound, namely 1,2-difluorobenzene, for use as a diluent solvent in the electrolyte to realize the “high-concentration effect”. The low energy level of the lowest unoccupied molecular orbital (LUMO), weak binding affinity for lithium ions, and high fluorine-donating power of 1,2-difluorobenzene jointly give rise to the high-concentration effect at a bulk salt concentration near 2 m , while modifying the composition of the solid-electrolyte-interphase (SEI) layer to be rich in lithium fluoride (LiF). The employment of triple salts to prevent corrosion of the aluminum current collector further improves cycling performance. This study offers a design principle for achieving a local high-concentration effect with reasonably low bulk concentrations of salts.  相似文献   

15.
In lithium metal batteries, electrolytes containing a high concentration of salts have demonstrated promising cyclability, but their practicality with respect to the cost of materials is yet to be proved. Here we report a fluorinated aromatic compound, namely 1,2‐difluorobenzene, for use as a diluent solvent in the electrolyte to realize the “high‐concentration effect”. The low energy level of the lowest unoccupied molecular orbital (LUMO), weak binding affinity for lithium ions, and high fluorine‐donating power of 1,2‐difluorobenzene jointly give rise to the high‐concentration effect at a bulk salt concentration near 2 m , while modifying the composition of the solid‐electrolyte‐interphase (SEI) layer to be rich in lithium fluoride (LiF). The employment of triple salts to prevent corrosion of the aluminum current collector further improves cycling performance. This study offers a design principle for achieving a local high‐concentration effect with reasonably low bulk concentrations of salts.  相似文献   

16.
可充锂金属负极严重的界面不稳定性和安全问题极大限制了其商业化应用,对于锂的沉积/溶出行为以及锂枝晶的成核生长机理的清楚认识将有利于更高效的可充锂金属负极改性研究。然而,由于锂金属的高反应活性所带来的产物复杂性及其形貌多样性给原位谱学表征带来了诸多的困难。中子深度剖析(Neutron Depth Profiling,NDP)技术由于其高穿透特性、定量非破坏性、且对锂的高灵敏性,在实时研究锂金属电池中锂的电化学行为上显示出广阔的应用前景。本文首先简要介绍了NDP技术的测试原理及提高其空间/时间分辨率的方法,同时总结分析了近年来NDP技术在液态/固态电池体系中锂金属负极研究的应用,并展望了NDP技术今后的发展前景。  相似文献   

17.
锂金属具有理论比容量高、电位低等优点,被认为是电极中的“圣杯”。然而,锂金属负极在循环过程当中存在着不可控的枝晶生长、体积膨胀等问题,严重地阻碍了锂金属电池的商业化进程。本综述首先概述了锂枝晶的形成机理,然后对由小及大,自内而外,总结了近年来三种不同层次的锂金属电池复合负极:锂金属负极内部结构的复合、锂金属电池内部结构的复合以及锂金属电池内部环境与外界操作条件的复合。最后,本综述对未来多层次锂金属电池复合负极的前景做出了展望。  相似文献   

18.
新型成膜电解液添加剂亚硫酸丁烯酯的电化学行为   总被引:2,自引:0,他引:2  
合成制备了一种新的环状亚硫酸酯类有机溶剂——亚硫酸丁烯酯(BS). 量子化学计算结果表明, 亚硫酸丁烯酯有机溶剂分子的总能、LUMO值比碳酸丙烯酯有机溶剂的低, 具有较强的得电子能力, 不易被氧化. 其作为添加剂与碳酸丙烯酯(PC)混合应用于锂离子电池中, 可有效地抑制PC在石墨电极中的共插入, 能显著改善循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号