首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
Mn-doped Zn2SiO4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn2SiO4 nanorods have higher photoluminescence intensity than Zn2SiO4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods.  相似文献   

2.
CuO nanostructures at different morphologies were synthesized in controlled manner using a simple low-temperature solvothermal technique. Controlling the pH of content the reaction mixture, nanoparticles, nanorods and nanocloud CuO structures were synthesized at temperature of 100-150 °C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [0 0 2] direction for linear structures. Photoluminescence spectrum of the as-grown nanostructures revealed oxygen-vacancy-related defects in them. The average sizes of NP-CuO (nanoparticles of CuO) at different morphologies were between 40 and 100 nm. The structure, morphology and size of NP-CuO were determined by X-ray diffraction powder (XRD), scanning electron microscopy (SEM), solid state Photo Luminescent (PL) and EDAX analysis.  相似文献   

3.
The oriented ZnO nanorod arrays have been synthesized on a silicon wafer that coated with TiO2 films by aqueous chemical method. The morphologies, phase structure and the photoluminescence (PL) properties of the as-obtained product were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM) and PL spectrum. The nanorods were about 100 nm in diameter and more than 1 μm in length, which possessed wurtzite structure with a c axis growth direction. The room-temperature PL measurement of the nanorod arrays showed strong ultraviolet emission. The effect of the crystal structure and the thickness of TiO2 films on the morphologies of ZnO nanostructures were investigated. It was found that the rutile TiO2 films were appropriate to the oriented growth of ZnO nanorod arrays in comparison with anatase TiO2 films. Moreover, flakelike ZnO nanostructures were obtained with increasing the thickness of anatase TiO2 films.  相似文献   

4.
《Current Applied Physics》2014,14(5):749-756
The growth mechanism of Zn1−xCoxO (ZC) and Zn1−xFexO (ZF) nanorods, and resulting magnetic and optical properties have been studied. The ZC and ZF nanorods were prepared by sol–gel synthesis route. X-ray diffraction results in polycrystalline phase with wurtzite structure of ZC and ZF nanorods. The transmission electron microscopy images show the formation of nanorods. The growth mechanism of nanorods is explained on the basis of agglomeration of Zn2+ with OH ions which is react with poly vinyl alcohol involve anionic polymerization of oriented growth. Magnetic measurement of ZC and ZF nanorods exhibit superferromagnetic behavior and the large value of saturation magnetization observed at room temperature. The magnetization below room temperature measurement confirms the origin of observed magnetism. Raman and photoluminescence spectra show good photoactivity. The observed Raman active modes show wurtzite structure belongs to C6v symmetry group. Photoluminescence measurements of ZC and ZF nanorods exhibit ultraviolet peaks at 413.90 nm (∼3 eV) due to free exciton emission and at 546.31 nm (∼2.27 eV) due to transition from deep donor states which arises from oxygen vacancy.  相似文献   

5.
Various morphologies of copper oxide (CuO) nanostructures have been synthesized by controlling the reaction parameters in a sonochemical assisted method without using any templates or surfactants. The effect of reaction parameters including molar ratio of the reactants, reaction temperature, ultrasound exposure time, and annealing temperature on the composition and morphology of the product(s) has been investigated. The prepared samples have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDAX), and thermogravimetric analysis (TGA). It has been found that Cu2(OH)3NO3 nanoplatelets are achieved in mild conditions which can be then converted to various morphologies of CuO nanostructures by either using high concentrations of OH (formation of nanorods), prolonging sonication irradiation (nanoparticles), or thermal treatment (nanospheres). Application of the prepared CuO nanostructures was evaluated as supercapacitive material in 1 M Na2SO4 solution using cyclic voltammetry (CV) in different potential scan rates ranging from 5 to 100 mV s−1. The specific capacitance has been calculated using CV curves. It has been found that the pseudocapacitor performance of CuO can be tuned via employing morphologically controlled samples. Accordingly, the prolonged sonicated sample (nanoparticles) showed the high specific capacitance of 158 F.g−1.  相似文献   

6.
Tellurium inherently tends to form 1-D structures and while the 0-D Te nanostructures have better properties and applications in solar cell. In the present study, 0-D Te nanostructures including rice-like and spherical nanoparticles with the particle size of 15–40 nm were successfully synthesized via a facile sonochemical method. In the absence of ultrasonic irradiation nanorods were produced while performing the reaction under ultrasonic waves (at 200 W for 30 min) led to the formation of nanoparticles. Finally, the efficiency of various as-synthesized Te nanostructures in quantum dot-sensitized solar cells (QDSSCs) were evaluated. Using rice-like nanoparticles led to increase in JSC, VOC, FF and η parameters from 1.22, 0.54, 0.49 and 0.32% to 1.57, 0.64, 0.63 and 0.63%, respectively, compared with nanorods.  相似文献   

7.
Layered manganese oxide nanostructures with different morphologies, such as nanowire bundles, cotton agglomerates, and platelikes were successfully fabricated by a simple and template-free hydrothermal method based on a reaction of KMnO4 and KOH solutions with different concentrations. The obtained nanowire bundles were assembled by nanowires with diameters of 10 to 200 nm and lengths up to 5–10 μm. The cotton agglomerates were composed of manganese oxide layers with a thickness of about 10 nm. Both the concentration of KOH solutions and the reaction temperature played an important role in the formation of layered manganese oxide nanostructures with different morphologies. XRD, SEM, TEM, HRTEM, SAED, TG-DTA, and chemical analysis were employed to characterize these materials. On the basis of the experimental results, a possible formation mechanism of layered manganese oxide nanostructures with different morphologies was presented. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Manganese-doped Zn2SiO4 phosphors with different crystal structures and morphologies were synthesized by glycothermal reactions of zinc acetate dihydrate and manganese(II) acetate tetrahydrate with tetraethyl orthosilicate in various glycols at 315 °C. The reactions in 1,3-propanediol and 1,4-butanediol yielded α-Zn2SiO4:Mn2+, whereas the reactions in ethylene glycol and 1,5-pentanediol yielded β-Zn2SiO4:Mn2+ and ZnO, respectively. The samples obtained in 1,4-butanediol and 1,3-propanediol emitted green light (522 nm), and the sample prepared in 1,4-butanediol showed a higher emission intensity. The photoluminescence intensity of the Zn1.96Mn0.04SiO4 phosphor prepared by a glycothermal reaction in 1,4-butanediol and subsequently calcined at 1100 °C was twice as high as that of the sample synthesized by a conventional solid-state reaction. The high emission efficiency was obtained because the highly homogeneous distribution of Mn2+ in the α-Zn2SiO4 host synthesized by the glycothermal reaction was maintained during calcination treatment in air.  相似文献   

9.
In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH to Zn2+ ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H+ and OH in the solution.  相似文献   

10.
Self-assembled three-dimensional (3D) urchin-like and flower-like La(OH)3 nanostructures were successfully prepared for the first time via a facile and fast microwave-assisted solution-phase chemical method in 15 min. The obtained products were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM results reveal that the urchin-like and flower-like La(OH)3 nanostructures are ca. 3 μm and 6 μm in diameter, respectively. The urchin-like La(OH)3 nanostructures are constructed by nanorods with diameters of about 300 nm and lengths of about 500 nm. The flower-like La(OH)3 nanostructures are built from nanopetals about 100 nm thick. The effects of reaction time, microwave power, amount of tetraethyl ammonium bromide (TEAB), and surfactants on the preparation were systematically investigated. The possible formation mechanism of the 3D La(OH)3 nanostructures was preliminarily discussed. Urchin-like and flower-like La2O3 nanostructures were obtained after calcining the La(OH)3 nanostructures at 800 °C for 4 h. Urchin-like and flower-like La2O3:Eu3+ nanostructures were also prepared and their photoluminescence (PL) properties were investigated.  相似文献   

11.
ZnO and ZnMgO nanostructures were synthesized on Si (1 0 0) substrates with the assistance of a gold catalyst, using a thermal evaporation method with a ZnO/ZnMgO compound as the source material. The substrates were placed in different temperature zones. ZnO nanostructures with different morphologies and different compounds were obtained at different substrate temperatures. Nanostructures with nanorods and nanosheets morphologies formed in the low and high temperature zones, respectively. The nanorods grown in the low temperature zone had two phases, hexagonal and cubic. Energy dispersive X-ray (EDX) results showed that the nanorods with a cubic shape contained more Mg in comparison to the nanowires with a hexagonal shape. We found that the substrate temperature and the gold catalyst were two key factors for the doping of Mg and the formation of nanostructures with different morphologies. Room temperature photoluminescence spectroscopy showed a blue-shift for the nanostructures with the nanorods morphology. This shift could be attributed to Mg effects that were detected in the nanorods.  相似文献   

12.
Room-temperature ferromagnetism was observed in Zn0.9Co0.1O nanorods with diameters and lengths of ∼100–200 nm and ∼200–1000 nm, respectively. Nanorods were synthesized by a simple sol–gel method using metal acetylacetonate powders of Zn and Co and poly(vinyl alcohol) gel. The XRD, FT-IR and SAED analyses indicated that the nanorods calcined at 873–1073 K have the pure ZnO wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co2+ in substitution of Zn2+. The specific magnetization of the nanorods appeared to increase with a decrease in the lattice constant c of the wurtzite unit cell with the highest value being at 873 K calcination temperature. This magnetic behavior is similar to that of Zn0.9Co0.1O nanoparticles prepared by polymerizable precursor method. We suggest that this behavior might be related to hexagonal c-axis being favorable direction of magnetization in Co-doped ZnO and the 873 K (energy of 75 meV) being close to the exciton/donor binding energy of ZnO.  相似文献   

13.
In the current work, zinc oxide (ZnO) nano/microstructures are synthesized using a modified thermal-evaporation process by introducing germanium oxide (GeO2) powder mixed with metallic Zn powder as the raw material. Without the use of any catalyst and oxygen flow in the furnace system, GeO2 is utilized to provide an oxygen source for the growth of ZnO structure. The samples are treated by different temperatures ranging from 500 to 900 °C. Morphology, phase structure, and photoluminescence properties are investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and photoluminescence (PL) spectrometer. The structures and morphologies of the samples were found to vary with growth temperature. The XRD diffraction peaks show that the films grown at temperature from 600 to 800 °C consist of hexagonal wurtzite ZnO structures. Room-temperature PL measurement revealed ZnO spectra representing two bands: near-band-edge emission in the ultraviolet (UV) region and broad deep-level emission centered at about 500 nm. The strong UV emission in the PL spectra indicates that the GeO2 supplies sufficient oxygen for formation of ZnO structures with few oxygen vacancies. The growth mechanism and the roles of GeO2 for formation of ZnO structures are discussed in detail.  相似文献   

14.
Silver tungstate (Ag2WO4) nanoparticles in two different morphologies are prepared by controlling the reaction kinetics of aqueous precipitation. X-ray diffraction studies reveal that the silver tungstate nanoparticles are in the α-phase. SEM images show the rod-like and fiber-like morphologies of the nanoparticles with high aspect ratios. The TGA and DTA studies show the high thermal stability of the nanorods. The average crystallite sizes (20–30 nm) of the rod-like silver tungstate estimated from TEM is consistent with the XRD results  相似文献   

15.
Zn2?2x Mn2x GeO4 (x=0, 0.001, 0.01) phosphors were prepared by conventional solid state reaction technique. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflection spectra, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. The Mn2+-activated Zn2GeO4 phosphors exhibit narrow emission band at 532 nm under the excitation of ultraviolet light, which due to the 4T1(4G)–6A1(6S) transition of Mn2+ ions. Also it is observed that there exists energy transfer between the Zn2GeO4 host lattice and the activator (Mn2+). Under excitation of low-voltage electron beams, Zn2GeO4:Mn2+ shows strong green emission band dominating at 535 nm, corresponding to the 4T1(4G)–6A1(6S) emission of Mn2+ ions. The emission intensity and chromaticity coordinates of Zn2GeO4:Mn2+ as a function of accelerating voltage and the filament current were also investigated.  相似文献   

16.
Orthorhombic Bi2S3 with different morphologies was successfully synthesized by the acid-catalyst hydrothermal reactions of bismuth nitrate (Bi(NO3)3) and thiourea (NH2CSNH2) solutions containing different amounts of hydroxyethyl cellulose (HEC). Phase, morphologies, and optical properties were characterized by X-ray diffraction, selected area electron diffraction, scanning and transmission electron microscopy, and ultraviolet-visible spectroscopy. The products, hydrothermally synthesized in the HEC-free, 0.25 g HEC-added, 0.5 g HEC-added and 1.00 g HEC-added solutions, were respectively proved to be orthorhombic Bi2S3 irregular nanorods, complete urchin-like colonies of regular nanorods, incomplete urchin-like colonies of regular nanorods, and highly crystalline regular nanorods growing along the [001] direction. Tauc band gaps of the orthorhombic Bi2S3 nanorods, synthesized in the HEC-free, 0.25 g HEC-added, and 1.00 g HEC-added solutions were determined to be 3.0, 1.75 and 1.8 eV, respectively. Formation mechanism of orthorhombic Bi2S3 nanorods, synthesized in the HEC-free and HEC-added solutions, was also discussed at great detail.  相似文献   

17.
Cr-doped ZnO nanostructures, in well-aligned Zn0.92Cr0.06O nanorods array, were synthesized by radio frequency (RF) magnetron sputtering deposition at different temperatures. The effects of growth temperature on the structure and optical properties of Zn0.92Cr0.06O nanorods were investigated in terms of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and spectrophotometer. With increase the growth temperature, Zn0.94Cr0.06O nanorods have a strong improved crystalline quality. High growth temperature enhances the build-in electric field in the depletion region in the grain of the nanorods, which trap free carriers from the bulk of the grains. XPS results shows that Cr3+ ions substitute Zn2+ ions, and no secondary phases in the sample are found, meanwhile the oxygen vacancies decrease with increasing growth temperature. The high growth temperature causes a significant increase in optical transmittance of the Zn0.92Cr0.06O nanorods, which can be attributed to the weakening of scattering and absorption of light because of the increase of grain size. The red shift of the optical band gap can be mostly likely related to the Burstein–Moss effect.  相似文献   

18.
王振宁  江美福  宁兆元  朱丽 《物理学报》2008,57(10):6507-6512
用射频磁控共溅射方法在不同温度的单晶硅基片上生长薄膜,然后在800℃真空环境下对薄膜进行退火处理,成功获得了结晶状态良好的Zn2GeO4多晶薄膜.利用X射线衍射(XRD),X射线光电子能谱(XPS)和原子力显微镜(AFM)对薄膜进行了结构、成分和形貌分析,研究了基片温度对三者的影响. 结果显示,当基片温度升高到400℃以上时,薄膜中的Zn2GeO4晶粒在(220)方向上显示出了明显的择优取向. 当基片温度在500—600℃范围内,有利于GeO2结晶相的形成. XPS显示薄膜中存在着Zn2GeO4,GeO2,GeO,ZnO四种化合态. 同时,随着基片温度的升高,晶粒尺寸增大且薄膜表面趋于平整. 薄膜的光致发光在绿光带存在中心波长为530和550nm两个峰,应该归因于主体材料Zn2GeO4中两个不同的Ge2+的发光中心. 关键词: 射频磁控溅射 2GeO4')" href="#">Zn2GeO4 荧光体  相似文献   

19.
Uniform, high-quality, single-crystalline MnFe2O4 nanorods with diameter around 25 nm and length up to 500 nm, have been reproducibly synthesized via a surfactant-free hydrothermal route. The growth direction of the obtained nanowires was determined to be its [1 1 1] direction, resulting in the increase of saturation magnetization. Mn2+ is responsible for one-dimensional growth of the nanorods, and the effects of reaction time and solution concentration on the morphology and crystallization of the MnFe2O4 nanorods were investigated. Saturation magnetization of the nanorods is 74.0 emu/g, which is among the best value reported so far.  相似文献   

20.
Germanium dioxide (GeO2) nanowires have been synthesized by means of the simple evaporation of solid Ge powders, without using metal catalysts. The nanowires, with a diameter of about 90–200 nm, were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The obtained GeO2 nanowires were crystalline with a hexagonal structure. The growth mechanism was discussed with respect to the vapor–solid process. The photoluminescence measurement revealed two emission peaks at about 2.45 eV and 2.91 eV at room temperature, opening up a route to potential applications in future optoelectronic nanodevices. Raman measurement of as-synthesized GeO2 nanowires was made at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号