首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A systematic study has been conducted to assess the performance of the TVD schemes for practical flow computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow computations. The results obtained show that all four variants can accurately resolve the shock and flow profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, good robustness and improved computational efficiency offered by the TVD schemes makes them attractive for computing high-speed flow with shocks. In terms of the relative performances it is found that the symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of grid points being employed.  相似文献   

2.
The objective of this paper is the development and assessment of a fourth‐order compact scheme for unsteady incompressible viscous flows. A brief review of the main developments of compact and high‐order schemes for incompressible flows is given. A numerical method is then presented for the simulation of unsteady incompressible flows based on fourth‐order compact discretization with physical boundary conditions implemented directly into the scheme. The equations are discretized on a staggered Cartesian non‐uniform grid and preserve a form of kinetic energy in the inviscid limit when a skew‐symmetric form of the convective terms is used. The accuracy and efficiency of the method are demonstrated in several inviscid and viscous flow problems. Results obtained with different combinations of second‐ and fourth‐order spatial discretizations and together with either the skew‐symmetric or divergence form of the convective term are compared. The performance of these schemes is further demonstrated by two challenging flow problems, linear instability in plane channel flow and a two‐dimensional dipole–wall interaction. Results show that the compact scheme is efficient and that the divergence and skew‐symmetric forms of the convective terms produce very similar results. In some but not all cases, a gain in accuracy and computational time is obtained with a high‐order discretization of only the convective and diffusive terms. Finally, the benefits of compact schemes with respect to second‐order schemes is discussed in the case of the fully developed turbulent channel flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We study the dynamics of capture into, or escape from, resonance in a strongly nonlinear oscillator with weak damping and forcing, using harmonic balance based averaging (HBBA). This system provides the simplest example of resonance capture that we know of. The HBBA technique, here adapted to tackle nonlinear resonances, provides a harmonic balance assisted approximation to the underlying, asymptotically correct, averaged dynamics. Allowing the harmonic balance approximation makes a variety of systems analytically tractable which might otherwise be intractable. The evolution equations for amplitude and phase of oscillations are derived first. Restricting attention near the primary resonance, the slow flow equations are approximately averaged. The resulting flow transparently shows the stable and unstable primary resonant solutions, as well as the trajectories that get captured into resonance and the ones that escape. Good agreement with numerics is obtained, showing the utility of HBBA near resonance manifolds.  相似文献   

4.
In the present paper unsteady Navier-Stokes equations have been solved numerically by finite-difference technique in staggered grid distribution for a flow through a channel with locally symmetric and asymmetric constrictions. A coordinate stretching has been made to map the infinite irregular geometry into a finite regular computational domain. Pressure and pressure-velocity corrections scheme have been developed. Convergence criteria (in terms of continuity equation) has been achieved after few time iterations. The critical Reynolds number for asymmetric flow through a symmetric constriction has been found. Critical values depend on the area reduction and the length of the constriction. The increment of Reynolds number grows the asymmetry of the flow. The root mean square (r.m.s.) centreline vertical velocity for asymmetric flow through a symmetric constriction has been drawn at different Reynolds numbers. For flow through symmetric constriction the centreline vertical velocity shows finite oscillation behind the constriction at high Reynolds number.  相似文献   

5.
This paper deals with analytical approximation of non-linear oscillations of conservative asymmetric single degree of freedom systems, using the method of harmonic balance with linearization. This technique which consists of linearizing the governing equations prior to harmonic balance permits us to avoid solving complicated non-linear algebraic equations. But it could be applied only to symmetric oscillations for which it proves to be very simple and effective. This restriction is due to the fact that the method requires an appropriate initial approximate solution as input. Such a solution could not be readily identified for nonsymmetric oscillations, contrary the symmetric case where the fundamental harmonic works well. For these nonsymmetric oscillations, we propose in this paper to consider an initial approximation which consists of a small bias plus the fundamental harmonic. By expanding the corresponding harmonic balance equations respectively to first and second order in the bias, we are able to easily determine the bias and thus the required initial approximate solution that yields consistent solution at higher order. We use three examples to illustrate the proposed approach and reveal its simplicity and its very good convergence.  相似文献   

6.
In this paper, the analytical dynamics of asymmetric periodic motions in the periodically forced, hardening Duffing oscillator is investigated via the generalized harmonic balance method. For the hardening Duffing oscillator, the symmetric periodic motions were extensively investigated with the aim of a good understanding of solutions with jumping phenomena. However, the asymmetric periodic motions for the hardening Duffing oscillators have not been obtained yet, and such asymmetric periodic motions are very important to find routes of periodic motions to chaos in the hardening Duffing oscillator analytically. Thus, the bifurcation trees from asymmetric period-1 motions to chaos are presented. The corresponding unstable periodic motions in the hardening Duffing oscillator are presented, and numerical illustrations of stable and unstable periodic motions are carried out as well. This investigation provides a comprehensive understanding of chaos mechanism in the hardening Duffing oscillator.  相似文献   

7.
The Navier–Stokes–Boussinesq equations governing the transport of momentum, mass and heat in a non-isothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a non-orthogonal co-ordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.  相似文献   

8.
Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two-dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z + = 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Re τ = 1,160, while the DNS data are extracted from a channel flow at Re τ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.  相似文献   

9.

This paper aims to apply a transformation method that replaces the elastic forces of the original equation of motion with a power-form elastic term. The accuracy obtained from the derived equivalent equations of motion is evaluated by studying the finite-amplitude damped, forced vibration of a vertically suspended load body supported by incompressible, homogeneous, and isotropic viscohyperelastic elastomer materials. Numerical integrations of the original equations of two oscillators described by neo-Hookean and Mooney–Rivlin viscohyperelastic elastomer material models, and their equivalent equations of motion, are compared to the frequency–amplitude steady-state solutions obtained from the harmonic balance and the averaging methods. It is shown from numerical integrations and approximate steady-state solutions that the equivalent equations predict well the original system dynamic response despite having higher system nonlinearities.

  相似文献   

10.
Consider a one-mass system with two degrees of freedom, non-linearly coupled, with parametric excitation in one direction. Assuming the internal resonance 1:2 and parametric resonance 1:2 we derive conditions for stability of the trivial solution by using both the harmonic balance method and the normal form method of averaging. If the trivial solution becomes unstable, a stable periodic solution may emerge, there are also cases where the trivial solution is stable and co-exists with a stable periodic solution; if both the trivial solution and the periodic solution(s) are unstable, we find an attracting torus with large amplitudes by a Neimark-Sacker bifurcation. The results of the harmonic balance method and averaging are compared, as well as the results on the Neimark-Sacker bifurcation obtained by the numerical software package CONTENT and by averaging. In all cases we have good agreement.  相似文献   

11.
This article presents a new nonlinear finite‐volume scheme for the nonisothermal two‐phase two‐component flow equations in porous media. The face fluxes are approximated by a nonlinear two‐point flux approximation, where transmissibilities nonlinearly depend on primary variables. Thereby, we mainly follow the ideas proposed by Le Potier combined with a harmonic averaging point interpolation strategy for the approximation of arbitrary heterogeneous permeability fields on polygonal grids. The behavior of this interpolation strategy is analyzed, and its limitation for highly anisotropic permeability tensors is demonstrated. Moreover, the condition numbers of occurring matrices are compared with linear finite‐volume schemes. Additionally, the convergence behavior of iterative solvers is investigated. Finally, it is shown that the nonlinear scheme is more efficient than its linear counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The accuracy of MUSCL upwind and Yee-Roe-Davis symmetric TVD schemes for simulating low Mach number flow is studied through a numerical experiment of the 2-D lid driven cavity problem. The steady slate solution is reached by using a marching approach based on the pseudocompressibilty method in conjunction with implicit approximate factorization. A finite volume discretization of the conservation equations is used with a four level multigrid method to accelerate the convergence. The tests performed which were in the range of 100 ≤ Re ≤ 5000, show that the Yee-Roe-Davis symmetric scheme generates results in very good agreement with the benchmark results over this range of Re. The MUSCL upwind scheme accuracy deteriorates with the increasing Re.  相似文献   

13.
A virtual‐characteristic approach is developed for thermo‐flow with finite‐volume methodology in which a multidimensional characteristic (MC) scheme is applied along with artificial compressibility. To obtain compatibility equations and pseudo‐characteristics, energy equation is taken into account in the MC scheme. With this inherent upwinding of convective fluxes, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of the MC scheme lies in its faster convergence rate with respect to the averaging scheme that is found to exhibit substantial delays in convergence. As benchmarks, forced and mixed convections in a cavity and in flow over cylinder and between parallel plates are examined for a wide range of Reynolds, Grashof, and Prandtl numbers. The MC and averaging schemes are applied for simulation purposes. Results show the better performance of the MC scheme in forced and mixed convections. Results confirm the robustness of the MC scheme in terms of accuracy and convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Du  Hai-En  Er  Guo-Kang  Iu  Vai Pan  Li  Li-Juan 《Nonlinear dynamics》2023,111(10):9025-9047

In this paper, a new method named constrained parameter-splitting perturbation method for improving the solutions obtained from the parameter-splitting perturbation method is proposed for solving the problems in some extremal cases, such as the strongly nonlinear vibration of an Euler–Bernoulli cantilever. The proposed method takes the advantages of both the perturbation method and the harmonic balance method. The idea is that the solution obtained by the parameter-splitting perturbation method is substituted into the equation of motion and then the accumulative error of the equation is minimized for determining the unknown splitting parameters under the constraints constructed under the frame of harmonic balance method. The forced vibration of an oscillator with cubic geometric nonlinearity and inertia nonlinearity and the forced vibration of a planar microcantilever beam with a lumped tip mass are studied as examples to reveal the efficacy of the proposed method. The inspection of the steady-state response including its stability is conducted by means of comparing the frequency-response curves obtained by the proposed method with those obtained by the numerical continuation method and harmonic balance method, respectively, to show the efficacy and the advantages of the proposed method. Meanwhile, the nonlinear ordering effect on the solutions of the proposed method is also studied by comparing the results obtained by using different nonlinear orderings in the systems. In the last, we found through convergence examinations that it is necessary to have corrections to the erroneous solution which are obtained by harmonic balance method and Floquet theory in stability analysis.

  相似文献   

15.
ABSTRACT

This paper presents an analytical method to examine the dynamical behavior of periodically perturbed linear conservative gyroscopic systems. Explicit stability conditions for perturbations of small intensity are obtained using the method of averaging. The existence of combination resonance in addition to subharmonic parametric resonance is established. For large periodic excitation, a numerical method based on the Floquet theory is used to extend the stability boundaries. These results are applied to the problem of flow-induced vibration in a supported cylindrical pipe conveying fluid with pulsating velocity. The effects of the mean flow velocity, dissipative forces, boundary conditions, and virtual mass on the extent of the parametric instability regions are then discussed.  相似文献   

16.
Hou  Hu-Shuang  Luo  Cheng  Zhang  Hua  Wu  Guo-Cheng 《Nonlinear dynamics》2023,111(9):8467-8476

It is usually essential to reveal the relationship between continuous-time systems and discrete-time ones. First, a discrete-time recurrent neural network is presented by the Euler scheme in this paper. Then, the time step size is set to a bifurcation parameter and frequency domain approach is adopted for Hopf bifurcation analysis. Moreover, the periodic solutions are obtained by the harmonic balance method; then the stability conditions are presented. The critical step size is determined with which the discrete-time recurrent neural network can inherit the stable state of the continuous-time one. Finally, one numerical example of the discrete-time recurrent neural network is given to support the theoretical analysis.

  相似文献   

17.
This paper presents a coupled model for anisotropic damage and permeability evolution by using a micro–macro approach. The damage state is represented by a second order tensor. The evolution of damage is determined from a crack propagation criterion. The free enthalpy function of cracked material is obtained by using micromechanical considerations. It is assumed that cracks exhibit normal aperture which is coupled with the crack growth due to asperities of crack faces. By using Darcy’s law for macroscopic fluid flow and assuming laminar flow in microcracks, the overall permeability of the RVE is obtained by a volume averaging procedure taking into account crack aperture in each orientation.  相似文献   

18.
Both the rotationally asymmetric inertia and transverse crack frequently appear in the rotor system. The parametric excitations induced by this two features cause instability and severe vibration under certain operating conditions. Thus, the parametric instability of a Jeffcott rotor with asymmetric disk and open transverse crack is studied analytically. The vibration equations of four degrees-of-freedom of the system are established, and the stiffness coefficients of cracked rotor shaft are derived based upon the compliance method and strain energy release rate method. Then, utilizing the harmonic balance method and Taylor expansion technique, the unstable widths of simple and combination instability regions (SIR and CIR) are solved approximately. For a practical rotor system, the approximate unstable widths are verified by the Floquet numerical analysis. The effects of crack depth and position upon the unstable widths are discussed, and the conditions for zero unstable points (ZUPs) are given: Besides the asymmetric angle should be π/2 (for SIR) or 0 (for CIR), the relationships between the inertia asymmetry and crack parameters (depth and position) are also presented analytically. These results would be useful for crack detection and instability control of the asymmetric rotor-bearing system.  相似文献   

19.
In this paper, a numerical investigation of incompressible flow around a hydrofoil is presented. The laminar flow was modeled at different angles of attack. Momentum and continuity equations were coupled by the artificial compressibility scheme. In finite‐volume method, convective fluxes were calculated and compared by four schemes. Flux averaging with pressure correction was used. The other characteristic‐based (CB) methods consisted of Roe scheme and original CB scheme. A revised CB scheme was implemented in this research, which demonstrated very accurate solutions with respect to others. The results confirmed the superiority of the revised upwind scheme regarding accuracy and convergence without any requirement to artificial viscosity. The problem was studied at high Reynolds numbers at the onset of turbulence. For time discretization, the fifth‐order Runge–Kutta scheme was used. Results were compared with those of others in which good agreement was observed. Numerical experiments were performed on the NACA0012 hydrofoil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
SUMMARY

We have analyzed several different approaches for simulating the fluid motion of a stratified two-phase system. The flow regime is transformed to a regular domain for numerical integration and the standard finite difference formulas are applied to discretize the governing and mapping equations. Five different interface iteration schemes that are based on the kinematic condition and the normal stress balance have been derived to update the position of the liquid-liquid interface. We have found that the iterative scheme based on the normal stress balance is more stable and is applicable to a wide range of capillary numbers, and that these appear to be the only sensitive parameter in the stratified two-phase system under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号