首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jens B?k Simonsen 《Surface science》2010,604(15-16):1300-1309
The interaction between 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and the rutile TiO2(110)–(1 × 1) surface under ultrahigh vacuum (UHV) conditions was investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The NEXAFS results showed that HHTP molecules formed a submonolayer and a monolayer that aligned along the [001]-direction with, respectively, a more or less flat downward orientation and a more upright orientation to the TiO2 surface. The HHTP molecules that aligned along the [001]-direction were most likely grafted onto the TiO2(110) surface by a bidentate bridge between each of the oxygen atoms of one of the catechol units within the HHTP molecule and two adjacent Ti(5f)4+ ions on the TiO2(110) surface. The coordination is non-dissociative in the case of the submonolayer, but dissociative in the monolayer, according to the analysis of the C1s XPS, UPS, C1s NEXAFS data and complementary DFT calculations.  相似文献   

2.
We present an STM study on the domain pattern formation of the Cu(110)–O surface. We found that the separation of the oxygen adsorbate phase into the domain pattern is consistent with a phenomenological model of size-dependent elastic relaxation of the strained surface. We developed a thermally assisted oxygen adsorption procedure aiming to control the size of the two-dimensional (2 × 1)–O islands nucleated at the surface under oxygen adsorption serving as precursors for domain pattern formation. We engineered wide range tuneable (2 × 1)–O domain patterns by controlling the nuclei size and the oxygen coverage at the pattern formation stage.  相似文献   

3.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

4.
We present the first measurements of the differential conductance of Co wires grown on top of Cu(110)-p(2 × 3)N (Cu3N). We apply scanning tunneling spectroscopy (STS) in constant height and constant current mode to access the electronic density of states of the sample over a wide energy range. All measurements have been performed at 7 K. Our study reveals that the differential conductance of the Co wires is very similar to that of Cu3N. Spectra of the differential conductance measured on the Co wires and on Cu3N reveal that both systems exhibit the same characteristic features near + 1.8V and + 3.5 V.  相似文献   

5.
The adsorption of coronene (C24H12) on the Si(1 1 1)-(7 × 7) surface is studied using scanning tunneling microscopy (STM). Upon room temperature submonolayer deposition, we find that the coronene molecules preferentially adsorb on the unfaulted half of the 7 × 7 unit cell. Molecules adsorbed on different sites can be induced to move to the preferential sites by the action of the tip in repeated image scans. Imaging of the molecules is strongly bias dependent, and also critically depends on the adsorption site. We analyze the results in terms of differential bonding strength for the different adsorption sites and we identify those substrate atoms which participate in the bonding with the molecule.  相似文献   

6.
Using density functional theory (DFT) we report results for the electronic structure and vibrational dynamics of hydrogenated silicon carbide (001) (3 × 2) surfaces with various levels of hydrogenation. These results were obtained using density functional theory with a generalized gradient exchange correlation function. The calculations reveal that metallization can be achieved via hydrogen atoms occupying the second silicon layer. Further increase of hydrogen occupation on the second silicon layer sites results in a loss of this metallization. For the former scenario, where metallization occurs, we found a new vibrational mode at 1870 cm? 1, which is distinct from the mode associated with hydrogen atoms on the first layer. Furthermore, we found the diffusion barrier for a hydrogen atom to move from the second to the third silicon layer to be 258 meV.  相似文献   

7.
8.
We use ultra-high vacuum scanning tunneling microscopy (UHV–STM) to probe, at the atomic level, the structure of mass-selected isolated V1, V2, VO and VO2 clusters deposited on rutile TiO2(110) by ion soft landing. All four species interact differently with the TiO2 surface and the ultimate binding site and configuration strikes a balance between the gas-phase structure and the ligation of this cluster by the TiO2 surface. Our results show that vanadium atoms prefer to bind in the upper threefold hollow sites on the surface and have a slight tendency to pair along the [1–10] direction, while vanadium dimers bind to the surface oriented along the [001] direction exclusively. VO clusters bind with the vanadium atom in the upper threefold hollow site and with the oxygen atom bound to an adjacent fivefold coordinated Ti atom (5c-Ti). The VO2 cluster also binds with the vanadium atom in the upper threefold hollow site and with both oxygen atoms bound to adjacent 5c-Ti atoms or with only one oxygen bound to the surface and the other directed out of the plane of the surface.  相似文献   

9.
The substrate reactions of three common oxygen sources for gate oxide deposition on the group III rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface are compared: water, hydrogen peroxide (HOOH), and isopropyl alcohol (IPA). Scanning tunneling microscopy reveals that surface atom displacement occurs in all cases, but via different mechanisms for each oxygen precursor. The reactions are examined as a function of post-deposition annealing temperature. Water reaction shows displacement of surface As atoms, but it does not fully oxidize the As; the reaction is reversed by high temperature (450 °C) annealing. Exposure to IPA and subsequent low-temperature annealing (100 °C) show the preferential reaction on the row features of InAs(0 0 1)-(4 × 2)/c(8 × 2), but higher temperature anneals result in permanent surface atom displacement/etching. Etching of the substrate is observed with HOOH exposure for all annealing temperatures. While nearly all oxidation reactions on group IV semiconductors are irreversible, the group III rich surface of InAs(0 0 1) shows that oxidation displacement reactions can be reversible at low temperature, thereby providing a mechanism of self-healing during oxidation reactions.  相似文献   

10.
We report on an interface-stabilized strained c(4 × 2) phase formed by cobalt oxide on Pd(1 0 0). The structural details and electronic properties of this oxide monolayer are elucidated by combination of scanning tunneling microscopy data, high resolution electron energy loss spectroscopy measurements and density functional theory. The c(4 × 2) periodicity is shown to arise from a rhombic array of Co vacancies, which form in a pseudomorphic CoO(1 0 0) monolayer to partially compensate for the compressive strain associated with the large lattice mismatch (~9.5%) between cobalt monoxide and the substrate. Deviation from the perfect 1:1 stoichiometry thus appears to offer a common and stable mechanism for strain release in Pd(1 0 0) supported monolayers of transition metal rocksalt monoxides of the first transition series, as very similar metal-deficient c(4 × 2) structures have been previously found for nickel and manganese oxides on the same substrate.  相似文献   

11.
The adsorption of methanol, formaldehyde, methoxy, carbon monoxide and water on a (2 × 1) PdZn surface alloy on Pd(1 1 1) has been studied using DFT calculations. The most stable adsorption structures of all species have been investigated with respect to the structure and the electronic properties. It was found that methanol is only weakly bound to the surface. The adsorption energy only increases with higher methanol coverage, where chain structures with hydrogen bonds between the methanol molecules are formed. The highest adsorption energy was found for the formate species followed by the methoxy species. The formaldehyde species shows quite some electronic interaction with the surface, however the stable η2 formaldehyde has only an adsorption energy of about 0.49 eV. The calculated IR spectra of the different species fit quite well to the experimental values available in the literature.  相似文献   

12.
Wei Jie Ong  Eng Soon Tok 《Surface science》2012,606(13-14):1037-1044
Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered “1 × 1” to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 ? similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between “disordered 1 × 1” and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.  相似文献   

13.
The adsorption and reconstruction of strong electron-acceptor TCNE on the Si(001)-(2 × 1) surface are investigated by density functional theory (DFT). The results show that TCNE prefers to adsorb on the trench between two adjacent dimer rows and the CC double bond is parallel to dimer rows. Charge density difference calculation and Bader charge analysis indicate that abundant negative charge transfers from dimer Si to TCNE. Strong interaction makes it difficult for TCNE to move on Si(001), which is confirmed by nudged elastic band (NEB) analysis. In addition, the correlations between simulated STM images and molecular orbitals are discussed and two surface reconstructions of (2 × 1) and (4 × 2) are predicted at different TCNE coverages.  相似文献   

14.
The aim of this work is to revisit the problem of acetylene adsorption on silicon (100). Extending previous theoretical work and including van der Waals forces explicitly in the simulations we remove existing ambiguities about the adsorption sites. The simulated adsorption energies and scanning tunneling microscopy contours are in good agreement with experimental data, they support the interpretation of a two-dimer feature at the surface as resulting from the adsorption of two individual molecules. It is also found that the simulated apparent heights agree with experimental values, if the actual bandgap of silicon is taken into account.  相似文献   

15.
We report here the growth of Ag film and its thermal stability on the TiO2(1 1 0)-(1×1) surface using combination techniques of low-energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). At a surface temperature as low as 125 K, a 2D growth of Ag films seems to occur for submonolayer coverages up to ∼0.8 ML. Annealing of low temperature grown Ag films to 500 K for coverage of 1–2.4 ML would result in the formation of metastable Ag layers with rest of Ag forming 3D needle-like islands on top of this Ag film.  相似文献   

16.
The atomic structures and the formation processes of the Ga- and As-rich (2×2) reconstructions on GaAs(111)A have been studied. The Ga-rich (2×2) structure is formed by heating the As-rich (2×2) phase, but the reverse change hardly occurs by cooling the Ga-rich surface under the As2 flux. Only when the Ga-rich (2×2) surface covered with amorphous As layers was thermally annealed, the As-rich (2×2) surface is formed. The As-rich (2×2) surface consists of As trimers located at a fourfold atop site of the outermost Ga layer, in which the rest-site Ga atom is replaced by the As atom.  相似文献   

17.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

18.
Topmost-surface-sensitive Si-2p photoelectron spectra of a clean Si(1 0 0)-2 × 1 surface have been measured using Si-2p photoelectron Si-L23VV Auger coincidence spectroscopy (Si-2p–Si-L23VV PEACS). The escape depth of the PEACS electrons is estimated to be ~1.2 Å. The results support the assignments of the Si up-atoms, the Si down-atoms, the Si 2nd-layer, and the Si bulk proposed in previous researches. The Si-2p component with a binding energy of ?0.23 eV relative to the bulk Si-2p3/2 peak, is shown to originate mainly from the topmost surface. Site selectivity of PEACS is indicated to be achieved to some degree by carefully selecting the kinetic energy of the Auger electrons. Since PEACS can be applied to any surface, the present study opens a new approach to identify PES components.  相似文献   

19.
Low-energy electron diffraction (LEED) have been used to determine the Cu(0 0 1)–c(4 × 4)-Sn structure formed at 300 K. It is demonstrated that a structural model suggested by scanning tunneling microscopy observations is correct: The model consists of one substitutional Sn atom and four Sn adatoms in the unit cell. Optimum parameters of the determined c(4 × 4) structure reveal that Sn adatoms laterally are displaced by 0.30 Å away from ideal fourfold-hollow sites along the 〈100〉 directions. It is proposed that such displacements of the Sn adatoms cause the formation of a network of octagonal rings on Cu(0 0 1). The substitutional Sn atom is located at each center of the octagonal rings. The formation conditions of the network are discussed.  相似文献   

20.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号