首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The motion of a vortex near a boundary of arbitrary shape is considered within the framework of a two-dimensional problem. Integrable differential equations of motion are obtained. Two forms of the algebraic equation of the vortex trajectories are derived. Examples of vortex motion near a straight-line boundary, in a channel, in an angular domain, in the neighborhood of a flat edge, in a round basin, and near a parabolic boundary.  相似文献   

2.
Formulas are obtained for the forces and moments acting on a spherical body made of a paramagnetic material in an uniform applied magnetic field and a magnet in a spherical vessel filled with magnetic fluid. An approximate formula is found for the force acting on bodies in ellipsoidal and cylindrical vessels or in a plane channel with a magnetic fluid in an uniform magnetic field. An analogy between the forces acting on a magnet and a paramagnetic body is demonstrated. The possibility of levitation of magnets and paramagnetic bodies in a vessel with a magnetic fluid is investigated.  相似文献   

3.
 This paper is a flow visualisation study of the effect of Coriolis force on the flow in the transition regime in a channel with a mild change in cross section. Transition in this flow is found to share a salient gross feature with its counterpart in a rotating channel of uniform cross section, viz. that it takes place at a Reynolds number around two orders of magnitude lower than the critical Reynolds number in a non-rotating system and it is then to a state of flow with highly ordered steady longitudinal vortices. The change in channel cross section has the effect that the longitudinal vortices may arise or be annihilated in neighbouring sub-domains within the flow region. While in a channel of decreasing cross section the flow may undergo transition as it proceeds downstream, it may also revert from the state with vortices to one without in a channel of increasing cross section. Viewed in terms of a stability diagram with local flow parameters alone, the cross-over points from one state to another do not coincide for the two cases, with the reversal of transition exhibiting a kind of “hysteresis”. Received: 21 July 1995/Accepted: 2 November 1996  相似文献   

4.
The motion of bubbles in liquids has been studied in many earlier papers [1–8]. In this paper methods of the projection type are applied to the problem of a cavity in an ideal, incompressible liquid in the absence of vortices. The collapse of a bubble having a finite initial velocity in a boundless liquid is considered; also considered is the collapse of a stationary bubble close to a solid wall. Using the small-parameter method the generation of a jet is examined analytically. A numerical computing method not involving small parameters is developed; it is based on calculating the projection by numerical computation of the corresponding integrals. The method combines economy and simplicity of application with a high accuracy in the region in which the representation of the velocity potential by a series of spherical functions remains effective.  相似文献   

5.
In contrast to a Newtonian fluid, a viscoplastic fluid can be in a state of mechanical equilibrium when heat is supplied from the side. Therefore, natural convection in a viscoplastic fluid heated from the side occurs only when the determining parameters exceed certain threshold values. The threshold conditions for the onset of convection for a flat vertical layer have been investigated several times [1–4]. The present paper is an investigation of the conditions of occurrence of plane-parallel natural convection of a viscoplastic fluid in regions with cylindrical symmetry: in a vertical annular layer and in a vertical circular tube.  相似文献   

6.
It was shown some time ago by use of diffusion theory that a gas bubble in a liquid-gas solution was unstable. This problem has been reconsidered recently in two papers both of which propose to develop a stability analysis solely from thermodynamic considerations. The first of these studies purports to find stability for a gas bubble in a liquid-gas solution. Some possible sources of error in this analysis are mentioned here. The second study considers a particular system of a bubble in a liquid drop immersed in a second liquid in which the gas is insoluble. A condition of stability is then found. This system is reconsidered here simply in terms of the ideas of diffusion theory. The stability conditions may then be stated in simple physical terms.  相似文献   

7.
A correct solution of Sretenskii’s plane problem of a source pulsating in a finite-depth fluid is derived. The solution is found using generalized functions as a limit in the infinite future of a wave regime generated by a source which starts to execute pulsations in a fluid initially at rest at a certain moment of time.  相似文献   

8.
The electric current formation in aircraft jet engine ducts and the electric current flowing into the gas dynamic wake behind a heated blade have been simulated experimentally. Two models were used in the experiments: a cylindrical metal channel through which a high-temperature gas flows and a metal blade (from a blade engine) in a high-temperature jet. The working medium was created in a gas-burning apparatus in which a propane jet was diffusively burned in a wake air flow. The dependence of the electric engine current on the air flow rate in the wake is given. The results obtained are qualitatively explained.  相似文献   

9.
In this paper we validate the generalized geometric entropy criterion for admissibility of shocks in systems which change type. This condition states that a shock between a state in a hyperbolic region and one in a nonhyperbolic region is admissible if the Lax geometric entropy criterion, based on the number of characteristics entering the shock, holds, where now the real part of a complex characteristic replaces the characteristic speed itself. We test this criterion by a nonlinear inviscid perturbation. We prove that the perturbed Cauchy problem in the elliptic region has a solution for a uniform time if the data lie in a suitable class of analytic functions and show that under small perturbations of the data a perturbed shock and a perturbed solution in the hyperbolic region exist, also for a uniform time.  相似文献   

10.
Some physical aspects of shock wave/boundary layer interactions   总被引:2,自引:0,他引:2  
  相似文献   

11.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

12.
13.
Many papers have been devoted to the problem of the interaction of beams of charged particles with a plasma (a detailed bibliography is given, for example, in [1]). Analysis of the dispersion equation shows that in the case of a sufficiently slow monoenergetic electron beam of low density, growing longitudinal waves are not excited in a system consisting of such a beam and a plasma [2–4].The problem of the penetration of an external longitudinal electric field into a semiconfined plasma with an electron beam in the absence of instabilities in the system is studied (the boundary-value problem for growing waves was examined in [5]). This problem is, in a certain sense, an extension of the second part of L. D. Landau's well-known work [6] to include the case of a plasma with a beam. On the other hand, in the absence of an external electric field, this problem may be considered a boundary-value problem of the interaction of a weakly modulated electron beam with a plasma.The authors thank M. L. Levin for his useful comments.  相似文献   

14.
The supersonic unsteady flow of a gas past a lattice of thin, slightly curved profiles has been investigated in several studies. The paper [1] is devoted to an evaluation of the effect of wind tunnel walls on the unsteady aerodynamic characteristics of a profile, and [2] investigates the effects of the boundaries of a free jet. These cases are equivalent respectively to the anti-phase and in-phase oscillations of the profiles of an unstaggered grid. In [3] consideration is given to a more general case of gas flow past a profile in a wind tunnel with perforated walls. Flow past a lattice of profiles with stagger is studied in [4], where the magnitude of the stagger angle is limited by the condition that the lattice leading edge is located in the undisturbed stream.In the present paper we present a method of calculation of the unsteady supersonic flow of a gas past a lattice of profiles with arbitrary stagger. As an example the results are presented of the calculation of the aerodynamic forces and moments acting on an oscillating profile in a wind tunnel with solid walls and in a free jet.  相似文献   

15.
This paper discusses questions of constructing a solution of the gasdynamic equations near a line of curvature discontinuity at the surface of a detonation wave, propagating under Chapman—Jouguet conditions. It describes the construction of the solution in two cases: in a flow arising with the initiation of a detonation along a half-plane in a quiescent homogeneous combustible gas and in a flow arising with the initiation of a detonation along a half-line under these same conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 120–126, January–February, 1978.  相似文献   

16.
Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.  相似文献   

17.
Particle methods have been seldom verified by a Karman vortex simulation, which is commonly performed as a typical benchmark in computational fluid dynamics. This is mainly due to a difficulty in suppression of occurrence of unphysical voids manifested usually in a strong vortex on account of definition of free surface by the Lagrangian tracking framework with inconsistency in volume conservation. This paper presents a simple and effective scheme as a free-surface boundary condition of projection-based particle methods, namely the MPS (moving particle semi-implicit) and Incompressible SPH (ISPH) methods to handle the free surface with consistency in volume conservation. The new scheme is introduced into the Poisson pressure equation (PPE) with consideration of a potential in void space as space potential particle (SPP), to reproduce physical motions of particles around free surface through a particle–void interaction. The enhancing effect of the newly proposed SPP scheme is shown by simulating a few numerical tests, including a whirling water flow, a two-phase surfacing flow, and a set of Karman vortex simulations.  相似文献   

18.
In [1] a system of equations was obtained for the case of a potential motion of an ideal incompressible homogeneous fluid; the system described the propagation of a train of waves in a medium with slowly varying properties, the motion in the train being characterized by a wave vector and a frequency. A solitary wave is a particular case of a wave train in which the length of the waves in the train is large. In [2, 3] a quasilinear system of partial differential equations was obtained which described two-dimensional and three-dimensional motion of a solitary wave in a layer of liquid of variable depth. It follows from this system that if the unperturbed state of the liquid is the quiescent state, then some integral quantity (the average wave energy [2–4]), referred to an element of the front, is preserved during the course of the motion. This fact is also valid for a train of waves, and can be demonstrated to be so upon applying the formalism of [1] to a Lagrangian similar to that used in [2]. In the present paper we obtain, for the case of a layer of liquid of constant depth, a solution in the form of simple waves for a system, equivalent to the system obtained in [3], describing the motion of a solitary wave and also the motion of a train of waves. We show that it is possible to have tilting of simple waves, leading in the case considered here to the formation of corner points on the wave front. We consider several examples of initial perturbations, and we obtain their asymptotics as t→∞. We make our presentation for the solitary wave case; however, in view of our statement above, the results automatically carry over to the case of a train of waves.  相似文献   

19.
Some examples of flows with separation zones andmovable contact discontinuities obtained as a result of the numerical integration of the time-dependent equations for an ideal gas are presented. The examples concern a steady annular separation zone on the blunt nose of a body in a supersonic flow, periodic shedding of unsteady discontinuities from a cylinder in a steady uniform subsonic flow with a supercritical Mach number, and the complicated deformation of a contact (tangential) discontinuity, namely, the boundaries of a two-dimensional jet, either subsonic or supersonic, flowing into a cocurrent subsonic low-velocity flow. A multiple increase in the difference grid capacity in the numerical integration of the Euler equations indicates the absence of a noticeable scheme viscosity effect in the examples calculated. The inviscid nature of the separation flows obtained is also confirmed by their well-known counterparts constructed in the ideal incompressible fluid approximation. The time-average velocity fields of the two-dimensional jet and the intensity of its sound field are in reasonable agreement with the available data.  相似文献   

20.
An experimental investigation was made of the flow of a viscous incompressible liquid in a trench of square transverse cross section, using a laser Doppler velocimeter. The investigation was made with two values of the Reynolds number Re, corresponding to laminar and turbulent flow conditions in the channel. The experimental data show that a core with a constant vorticity is formed in the trench, that a jet propagates near the walls of the trench, and that there are secondary eddies in the corners of the trench. The motion of a viscous liquid in a trench of rectangular cross section is part of a broad class of breakaway flows. Experimental data on the investigation of flow in trenches are extremely few. A majority of the existing information is limited to visual observations [1–4]. In [2, 5, 6] the question of the unstable character of flow in trenches was discussed. Quantitative measurements of stable eddy flows in trenches were made in [7–9] using a thermoanemometer, and in [7] measurements were made of the pressure at the bottom and walls of trenches; there are data on the distribution of the velocity in the middle sections of trenches. In [8] the mean velocity, the intensity of the turbulence, and the stress of the turbulent flow were obtained in several sections parallel to the side walls of the trench, In [9] a measurement was made of the velocities also in two cross sections of a trench in which one component of the velocity prevails. A brief analysis of the existing experimental results shows that these data are insufficient to form a detailed representation of the character of flow in a trench.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 76–86, March–April, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号