首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of fluid density and viscosity on dispersion in miscible displacements in porous media is examined. Miscible displacement experiments with fluid pairs having density and viscosity differences are carried out in a Plexiglas column containing a homogeneous and isotropic sand pack. Tracer tests and tests of both stable and unstable miscible displacement are conducted using NaCl and glycerine solutions. Concentration breakthrough curves are measured through an electrical monitoring technique. Following the conventional convection–dispersion formulation, the dispersion coefficient is determined by performing a least squares fit to the measured concentration breakthrough curves. It is found that for stable displacements dispersion coefficients drop continually when density differences increase or when viscosity ratios of the displaced and displacing fluid decrease. In the unstable case the dispersion coefficients increase with both density and viscosity differences.  相似文献   

2.
3.
Despite the increase in horizontal well applications, scaling fluid displacement in porous medium with horizontal wells is yet to be fully investigated. Determining the conditions under which horizontal wells may lead to better oil recovery is of great importance to the petroleum industry. In this paper, a numerical sensitivity study was performed for several well configurations. The study is performed in order to reveal the functional relationships between the scaling groups governing the displacement and the performance of immiscible displacements in homogeneous reservoirs produced by horizontal wells. These relationships can be used as a quick prediction tool for the fractional oil recovery for any combinations of the scaling groups, thus eliminating the need for the expensive fine-mesh simulations. In addition, they provide the condition under which a horizontal well configuration may yield better recovery performance. These results have potential applications in modeling immiscible displacements and in the scaling of laboratory displacements to field conditions.  相似文献   

4.
Miscible displacements in homogeneous porous media involving time-dependent injection velocities \(U(t)\) are analyzed. The displacements consist of periodic cycles that involve alternating stages of injection and production or of injection and soaking. Results of a linear stability analysis revealed that the growth rate of disturbances follows the overall trends of the velocity \(U(t)\) but with noticeable differences in periods of transition from production to injection. Furthermore, the growth rate of the time-dependent velocity was found to be smaller than that of a constant injection with a velocity equal to that corresponding to the minimum of \(U(t)\) while an overshoot was observed with respect to a displacement with a constant injection velocity equal to the maximum of \(U(t)\) . Nonlinear simulations revealed that the dynamics of the flow can be drastically changed from those of the corresponding constant injection velocity and the changes depend on the period of the cycles, the amplitude of the velocity and on whether the displacement is initiated through an injection or a soaking stage. The enhancement or attenuation of the instability in comparison with the constant injection velocity increases with the cycles’ period and the amplitude of the velocity in the injection stage, with the effects of the former being more prominent. It was also found that, beyond a certain critical cycle period, it is possible to observe instability and fingering in the case of time-dependent displacements that actually result in a net zero flow.  相似文献   

5.
The viscous fingering instability of miscible reactive–dispersive flows in a homogeneous porous media is investigated through nonlinear numerical simulations. In particular, the role of velocity-dependent transverse and longitudinal dispersions as well as the type and rate of auto-catalytic chemical reactions is analyzed. It is found that for a third-order auto-catalytic reaction, the higher the reaction rate, the more complex the finger structures. Furthermore, major differences between the flow development of third-order and second-order autocatalytic reactions are reported. In addition, the anisotropy and velocity dependence of the dispersion tensor are found to have a more profound effect on the fingering instability in the case of reactive flows than in the non-reactive ones. The qualitative characterization of the finger structures is explained by examining the flow velocity field and further quantified through an analysis of the average concentration and relative contact area.  相似文献   

6.
In the flow of liquids through porous media, nonlinear effects arise from the dependence of the fluid density, porosity, and permeability on pore pressure, which are commonly approximated by simple exponential functions. The resulting flow equation contains a squared gradient term and an exponential dependence of the hydraulic diffusivity on pressure. In the limiting case where the porosity and permeability moduli are comparable, the diffusivity is constant, and the squared gradient term can be removed by introducing a new variable y, depending exponentially on pressure. The published transformations that have been used for this purpose are shown to be special cases of the Cole–Hopf transformation, differing in the choice of integration constants. Application of Laplace transformation to the linear diffusion equation satisfied by y is considered, with particular reference to the effects of the transformation on the boundary conditions. The minimum fluid compressibilities at which nonlinear effects become significant are determined for steady flow between parallel planes and cylinders at constant pressure. Calculations show that the liquid densities obtained from the simple compressibility equation of state agree to within 1% with those obtained from the highly accurate Wagner-Pru?  equation of state at pressures to 20 MPa and temperatures approaching 600 K, suggesting possible applications to some geothermal systems.  相似文献   

7.
可变形多孔介质中的一维非定常耦合渗流   总被引:7,自引:0,他引:7  
在Biot理论的基础上,考虑到可变形多孔介质的渗透系数依赖于孔隙变形的特点,建立了耦合渗流问题的基本方程;用初始层校正法求出了一维非定常耦合渗流问题的摄动解;实例计算表明,耦合分析与非耦合分析之间的判别较大,因此耦合效应不能忽略。  相似文献   

8.
We describe scale up of geological models of field-scale porous media using a new method based on the wavelet transformations. The porous media of interest contain broadly-distributed and correlated permeabilities. Wavelet transformation of the permeability field of such porous media coarsens the geological model from smallest to largest length scales, drastically reduces the number of equations to be solved, preserves the important information on the permeability field at all the relevant length scales, and yields numerical results for any fluid flow property that are as accurate as those that are obtained with the highly detailed geological model of the same porous media. To test this method, we carry out extensive computer simulations of unstable miscible displacement processes and the associated viscous fingering phenomenon in highly heterogeneous porous media, both with the fine-scale geological model and the coarsened model. Excellent agreement is found between the results of the two sets of simulations.  相似文献   

9.
Recently, it has been suggested that Darcy's Law might not be applicable for modelling miscible, density-dependent flow in porous media. To investigate this, three sets of careful laboratory column experiments were performed on coarse and medium sands, consisting of upward displacement of water by sodium chloride solutions with concentrations ranging from 5 to 200g/l. Data on salt concentrations and water pressures were collected in horizontal transects along the flow direction. Salt concentration data were also collected in the influent and exit lines. The experimental data were analysed using a simplified approach based on Darcy's Law alone, applied with the assumption of a sharp interface. Darcy's Law was used to estimate porous medium permeability by fitting predictions to experimental data. Consistent estimates of permeability were obtained for each set of experiments. The results indicate that Darcy's Law adequately describes high concentration displacements through saturated coarse- and medium-grained porous media.  相似文献   

10.
Understanding the role of shuttle vibrations in pore fluid distribution is an essential task in the exploration of plant growth in root modules aboard space flights. Results from experimental investigations are reported in this paper on the distribution of immiscible fluid phases in glass beads under vibrations. Hexadecane, a petroleum compound immiscible with and lighter than water, was used in the experiments. The higher freezing point of Hexadecane (18 °C) allowed the solidification of the entrapped blobs in the presence of water in porous media, so that their size distribution can be obtained. van Genuchten function, commonly used to express moisture retention curves, is found to be an adequate fit for blob size distribution at residual saturation. The effect of vibrations on the fate (mobilization, stranding, or breakup) of a solitary ganglion in porous media was studied using a network model. A mobility criterion considering viscous, gravity, and capillary forces was developed to determine the fate of a solitary ganglion in a porous medium. It is concluded that the effect of vibrations is to increase the likelihood of breakup and mobilization of blobs entrapped in porous media at residual saturation. The pore fluid distributions after vibrations are less uniform than those before vibrations.  相似文献   

11.
可压缩气体定常非Darcy渗流的流动分析及其应用   总被引:1,自引:0,他引:1  
气体通过多孔介质的非Darcy流动具有广泛的工程应用背景,因此对多孔介质中的气体非Darcy流动进行流动分析有着非常重要的意义。然而,在通常的研究中,一般都将气体考虑为不可压缩流体,很少考虑气体的压缩性。对于高压气体以较高的速度通过多孔介质的情况,在进行流动分析时,不仅要考虑非Darcy效应,还必须考虑气体的压缩性。在本文中,对可压缩气体通过多孔介质的定常非Darcy流动进行了一维流动分析,得出了多孔介质中气体的压力分布和速度分布。还进一步给出了在高压差和高流速情况下,测定多孔介质材料渗透率和惯性系数的方法,以及多孔介质材料前后压力差与材料厚度的比Δp/L和材料有气流速度u1的解析关系。  相似文献   

12.
Yang  D.  Udey  N.  Spanos  T.J.T. 《Transport in Porous Media》1999,35(1):37-47
A thermodynamic automaton model of fluid flow in porous media is presented. The model is a nonrelativistic version of a Lorentz invariant lattice gas model constructed by Udey et al. (1998). In the previous model it was shown that the energy momentum tensor and the relativistic Boltzman equation can be rigorously derived from the collision and propagation rules. In the present paper we demonstrate that this nonrelativistic model can be used to accurately simulate well known results involving single phase flow and diffusion in porous media. The simulation results show that (1) one-phase flow simulations in porous media are consistent with Darcy's law; (2) the apparent diffusion coefficient decreases with a decrease in permeability; (3) small scale heterogeneity does not affect diffusion significantly in the cases considered.  相似文献   

13.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

14.
Single-walled carbon nanotube-silica nanohybrid particles are a very promising material that could be used for enhanced oil recovery because of their interfacial activity. To demonstrate the basic principle, aqueous nanohybrid particle dispersions were evaluated by looking at the effect of pH, surfactant, and polymer. The results showed that pH did not have significant effect on the dispersion stability of nanohybrid particles. Although surfactant could improve the dispersion stability, it reduced the interfacial activity of the nanohybrid particles, causing them to stay in the aqueous phase. The best nanohybrid particle dispersion stability was found upon polymer addition, where the dispersions were stable for more than a week even at low polymer concentration (50?ppm). One-dimensional sand-pack studies were performed to evaluate the flow of the nanohybrid particles through porous media. The results showed that most of the nanohybrid particles (>99%) could pass through a column packed with glass beads while a measurable fraction of the particles was retained in the column packed with crushed Berea. When the columns contained a residual saturation of decane, additional nanohybrid particles were retained at the oil/water interface in both glass beads and crushed Berea sand media. The sand pack studies showed that not only can the nanohybrid particles flow through porous media but also about half of the particles injected will go the O/W interface when the porous medium contains a residual saturation of hydrocarbon, where they could be used to support a catalytic conversion of components of the oil in reservoirs.  相似文献   

15.
Fluid displacement in porous media plays an important role in many industrial applications, including biological filtration, carbon capture and storage, enhanced oil recovery, and fluid transport in fuel cells. The displacement front is unstable, which evolves from smooth into ramified patterns, when the mobility (ratio of permeability to viscosity) of the displacing fluid is larger than that of the displaced one; this phenomenon is called viscous fingering. Viscous fingering increases the residual saturation of the displaced fluid, considerably impairing the efficacy of fluid displacement. It is of practical importance to develop suitable methods to improve fluid displacement. This paper presents an experimental study on applying the discontinuity of capillary pressure to improve immiscible fluid displacement in drainage for which the displacing fluid (air) wets the porous media less preferentially than does the displaced fluid (silicone oil). The concept involves using a heterogeneous packing system, where the upstream region features large pores and small capillary pressure, and the downstream region features small pores and large capillary pressure. The increase in capillary pressure prevents fingering from directly crossing the media interface, thus enhancing the displacement. The experimental apparatus was a linear cell comprising porous media between two parallel plates, and glass beads of 0.6 and 0.125 mm diameter were packed to compose the heterogeneous porous media. The time history of the finger flow was recorded using a video camera. Pressure drops over the model from the inlet to the outlet were measured to compare viscous pressure drops with capillary pressures. The results show that the fluid displacement was increased by the capillary discontinuities. The optimal displacement was determined through linear regression by adjusting the relative length of the large- and small-pore region. The results may assist in the understanding of fingering flow across the boundaries of different grain-sized bands for the gas and oil reservoir management, such as setting the relative location of the injection and production wells. The findings may also serve as a reference for industrial applications such as placing the grain bands in an adequate series to improve the displacement efficacy in biological filtration.  相似文献   

16.
We prove that the rest state of a viscous isothermal gas filling a bounded rigid vessel, is exponentially stable with respect a large class of "weak" perturbations that, in particular, allow for supersonic flow and discontinuous densities. In the inviscid limit, marginal stability is recovered.  相似文献   

17.
Numerical simulations to characterize fluid flow through porous media have been carried out using tomography-derived real geometry data that has been manipulated using digital image processing techniques to obtain a wide range of porosities. Two kinds of porous media have been analyzed: (a) a reticulated porous ceramic (RPC) foam and (b) a packed bed of CaCO3 particles. The porosity of the media is varied via morphological operations between 0.727 and 0.913 in case of the RPC and between 0.329 and 0.824 in case of the packed bed. A mesh generator based on the pore space indicator function is then used to generate unstructured tetrahedral grids from the processed tomography data. Fluid flow simulations are carried out for Reynolds numbers ranging from 0.1 to 200 and the results are used to determine the permeability and the Dupuit?CForchheimer coefficient in each case. The results are then compared with existing analytical models and the applicability of the models is examined. In the RPC case, the Happel?CBrenner (parallel-flow) model predicts the permeability with a normalized root mean square error (NRMSE) of 11.8 % across the porosity range and Modified Ergun (Macdonald et. al) model predicts the Dupuit?CForchheimer coefficient within a NRMSE of 13.5 %. In the packed-bed case, the Brinkman drag model predicts the permeability within a NRMSE of 8.26 % across the porosity range and the Modified Ergun model predicts the Dupuit?CForchheimer coefficient within an NRMSE of 5.94 %. For each material, an adjusted Kozeny constant is determined. For the RPC, the Kozeny constant is evaluated at 7.73 and for the CaCO3 packed bed, it is found to be 6.10, leading to predictions of the permeability with an NRMSE of 4.16 and 3.37 %, respectively.  相似文献   

18.
渗流方程自适应非均匀网格Dagan粗化算法   总被引:4,自引:0,他引:4  
在粗网格内先统计渗透率在粗网格中的概率分布,利用Dagan渗透率粗化积分方程通过渗透率概率分布计算粗化网格的等效渗透率,并由等效渗透率计算了粗化网格的压强分布,计算压强时还将渗透率自适应网格技术应用于三维渗流方程的网格粗化算法中,在渗透率或孔隙度变化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度变化异常区域的压强分布。整个求解区采用不均匀网格粗化,在流体流速高的区域采用精细网格。利用本文方法计算了三维渗流方程的压强分布,结果表明这种算法的解在渗透率或孔隙度异常区的压强分布规律非常逼近精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,计算速度比采用精细网格提高了约100倍。  相似文献   

19.
Existence theorems are proved for solutions of problems of nonlinear gravity fluid filtration in regions with specified boundaries of complex geometry. The theory developed can be used to design the underground flow net of a hydraulic structure with specified filtration characteristics.  相似文献   

20.
This article deals with the onset of thermosolutal natural convection in horizontal superposed fluid and porous layers. A linear stability analysis is performed using the one-domain approach. As in the thermal convection case, the results show a bimodal nature of the marginal stability curves where each mode corresponds to a different convective instability. At small wave numbers, the convective flow occurs in the whole cavity (“porous mode”) while perturbations of large wave numbers lead to a convective flow mainly confined in the fluid layer (“fluid mode”). Furthermore, it is shown that the onset of thermosolutal natural convection is characterized by a multi-cellular flow in the fluid region for negative thermal Rayleigh numbers. For positive thermal Rayleigh numbers, the convective flow takes place both in the fluid and porous regions. The influence of the depth ratio and thermal diffusivity ratio is also investigated for a wide range of the thermal Rayleigh numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号