首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-phase flow is a key process occurring in subsurface reservoirs, for example, during $\text{ CO }_2$ sequestration and enhanced oil recovery techniques such as water alternating gas (WAG) injection. Predicting three-phase flow processes, for example, the increase in oil recovery during WAG, requires a sound understanding of the fundamental flow physics in water- to oil-wet rocks to derive physically robust flow functions, i.e. relative permeability and capillary pressure. In this study, we use pore-network modelling, a reliable and physically based simulation tool, to predict the flow functions. We have developed a new pore-scale network model for rocks with variable wettability, from water- to oil-wet. It comprises a constrained set of parameters that mimic the wetting state of a reservoir. Unlike other models, it combines three main features: (1) A novel thermodynamic criterion for formation and collapse of oil layers. The new model hence captures wetting film and layer flow of oil adequately, which affects the oil relative permeability at low oil saturation and leads to accurate prediction of residual oil. (2) Multiple displacement chains, where injection of one phase at the inlet triggers a chain of interface displacements throughout the network. This allows for the accurate modelling of the mobilisation of many disconnected phase clusters that arise, in particular, during higher order WAG floods. (3) The model takes realistic 3D pore-networks extracted from pore-space reconstruction methods and CT images as input, preserving both topology and pore shape of the sample. For water-wet systems, we have validated our model with available experimental data from core floods. For oil-wet systems, we validated our network model by comparing 2D network simulations with published data from WAG floods in oil-wet micromodels. This demonstrates the importance of film and layer flow for the continuity of the various phases during subsequent WAG cycles and for the residual oil saturations. A sensitivity analysis has been carried out with the full 3D model to predict three-phase relative permeabilities and residual oil saturations for WAG cycles under various wetting conditions with different flood end-points.  相似文献   

2.
We use a three-dimensional mixed-wet random network model representing Berea sandstone to compute displacement paths and relative permeabilities for water alternating gas (WAG) flooding. First we reproduce cycles of water and gas injection observed in previously published experimental studies. We predict the measured oil, water and gas relative permeabilities accurately. We discuss the hysteresis trends in the water and gas relative permeabilities and compare the behavior of water-wet and oil-wet media. We interpret the results in terms of pore-scale displacements. In water-wet media the water relative permeability is lower during water injection in the presence of gas due to an increase in oil/water capillary pressure that causes a decrease in wetting layer conductance. The gas relative permeability is higher for displacement cycles after first gas injection at high gas saturation due to cooperative pore filling, but lower at low saturation due to trapping. In oil-wet media, the water relative permeability remains low until water-filled elements span the system at which point the relative permeability increases rapidly. The gas relative permeability is lower in the presence of water than oil because it is no longer the most non-wetting phase.  相似文献   

3.
As gas flooding becomes a more viable means of enhanced oil recovery, it is important to identify and understand the pore-scale flow mechanisms, both for the development of improved gas flooding applications and for the predicting phase mobilisation under secondary and tertiary gas flooding. The purpose of this study was to visually investigate the pore-level mechanisms of oil recovery by near-miscible secondary and tertiary gas floods. High-pressure glass micromodels and model fluids representing a near-miscible fluid system were used for the flow experiments. A new pore-scale recovery mechanism was identified which significantly contributed to oil recovery through enhanced flow and cross-flow between the bypassed pores and the injected gas. This mechanism is strongly related to a very low gas/oil interfacial tension (IFT), perfect wetting conditions and simultaneous flow of gas and oil in the same pore, all of which occur as the gas/oil critical point is approached. The results of this study helps us to better understand the pore-scale mechanisms of oil recovery in very low-IFT (near-miscible) systems. In particular we show that in near-miscible gas floods, behind the main gas front, the recovery of the oil continues by cross-flow from the bypassed pores into the main flow stream and as a result almost all of the oil, which has been contacted by the gas, could be recovered. Our observations in high-pressure micromodel experiments have demonstrated that this mechanism can only occur in near-miscible processes (as opposed to immiscible and completely miscible processes), which makes oil displacement by near-miscible gas floods a very effective process.  相似文献   

4.
We present results of high-pressure micromodel visualizations of pore-scale fluid distribution and displacement mechanisms during the recovery of residual oil by near-miscible hydrocarbon gas and SWAG (simultaneous water and gas) injection under conditions of very low gas–oil IFT (interfacial tension), negligible gravity forces and water-wet porous medium. We demonstrate that a significant amount of residual oil left behind after waterflooding can be recovered by both near-miscible gas and SWAG injection. In particular, we show that in both processes, the recovery of the contacted residual oil continues behind the main gas front and ultimately all of the oil that can be contacted by the gas will be recovered. This oil is recovered by a microscopic mechanism, which is strongly linked to the low IFT between the oil and gas and to the perfect spreading of the oil over water, both of which occur as the critical point of the gas–oil system is approached. Ultimate oil recovery by near-miscible SWAG injection was as high as near-miscible gas injection with SWAG injection using much less gas compared to gas injection. Comparison of the results of SWAG experiments with two different gas fractional flow values (SWAG ratio) of 0.5 and 0.2 shows that fractional flow of the near-miscible gas injected simultaneously with water is not a crucial factor for ultimate oil recovery. This makes SWAG injection an attractive IOR (improved oil recovery) process especially for reservoirs, where continuous and high-rate gas injection is not possible (e.g. due to supply constraint).  相似文献   

5.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

6.
Performance of a polymer flood process requires the knowledge of rheological behavior of the polymer solution and reservoir properties such as rock wettability. To provide a better understanding of effects of polymer chemistry and wettability on the performance of a polymer flood process, a comprehensive experimental study was conducted using a two-dimensional glass micromodel. A series of water and polymer flood processes were carried out at different polymer molecular weights, degrees of polymer hydrolysis, and polymer concentrations in both water-wet and oil-wet systems. Image processing technique was applied to analyze and compare microscopic and macroscopic displacement behaviors of polymer solution in each experiment. From micro-scale observations, the configuration of connate water film, polymer solution trapping, flow of continuous and discontinuous strings of polymer solution, piston-type displacement of oil, snap-off of polymer solution, distorted flow of polymer solution, emulsion formation, and microscopic pore-to-pore sweep of oil phase were observed and analyzed in the strongly oil-wet and water-wet media. Rheological experiments showed that a higher polymer molecular weight, degree of hydrolysis, and concentration result in a higher apparent viscosity for polymer solution and lower oil–polymer viscosity ratio. It is also shown that these parameters have different impacts on the oil recovery in different wettabilities. Moreover, a water-wet medium generally had higher recovery in contrast with an oil-wet medium. This experimental study illustrates the successful application of glass micromodel techniques for studying enhanced oil recovery (EOR) processes in five-spot pattern and provides a useful reference for understanding the displacement behaviors in a typical polymer flood process.  相似文献   

7.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

8.
Fractional wettability has been widely recognized in most of the oil reservoirs and it is a crucial factor that controls the fluid flow behavior in porous medium. The overall effect of the proportion of oil-wet grains on the fluid flow properties has been well discussed. However, recent studies found that the random distribution and coordination of oil-wet and water-wet grains could make multi-phase flow behaviors extremely complicated in such media. The multiphase flow mechanisms in fractional wettability media remains unclear. In this study, oil imbibition experiments were systematically conducted using glass cylinders packed with fractional-wet glass beads. To study the effect of fractional wettability on multiple-phase flow properties, samples with different oil-wet grain proportions were prepared, and fifteen repeated experiments were conducted for each oil-wet proportion. The experimental results showed that oil imbibition was largely dependent on but not strictly a function of the proportion of oil-wet grains in the medium. The imbibition behaviors of samples with the same fractional proportion could vary significantly, as some samples exhibited complete oil migration, while others did not. This probabilistic phenomenon is likely due to the random distribution of oil-wet and water-wet grains. A pore throat may behave as oil-wet or water-wet depending on the relative proportion of oil-wet grains the pore throat contains. When the grains that comprise the pore throat are dominated by oil-wet grains, the throat behaves as oil-wet, and vice versa. Only when these oil-wet pore throats are connected to form a complete oil-wet pathway throughout the medium can the oil continuously imbibe into the medium. Therefore, the extent of oil imbibition depends on the completeness of the oil-wet pathway, which is controlled by the proportion of oil-wet grains in the medium. The higher the proportion of oil-wet grains in the medium, the larger the number of oil-wet pore throats that can form; thus, the higher the possibility that those oil-wet pore throats can connect to form continuous oil-wet pathways.  相似文献   

9.
The impact of fractional wettability on the production characteristics of a VAPEX process at the macroscale was investigated. Conventional VAPEX experiments were conducted in a 220 Darcy random packing of glass beads in a rectangular physical model and n-pentane was used to recover the Cold Lake bitumen from the oil-saturated model in the absence of connate water. The composition of oil-wet beads in the packed bed was altered from completely water-wet beads to completely oil-wet beads at different proportions of oil-wet beads mixed with water-wet beads. A substantial increase (about 40%) in the production rate of live oil was observed during the VAPEX process when the wettability of the porous packing was entirely oil-wet beads. A critical oil-wet fraction of 0.66 was found for the heterogeneous packing of water-wet and oil-wet beads of similar size distribution. Above this critical composition, the live oil production rate was not affected by further increase in the proportion of the oil-wet beads. It is believed that above this critical composition of the oil-wet beads, the crevice flow process is dominated by the continuity of higher conductivity live oil films between particles through the oil-wet regions. Below this critical composition, the live oil production rate increased linearly with the fraction of the oil-wet beads in the packing. The oil-wet regions favor the live oil drainage compared to that of the water-wet regions as they enhance the rate of imbibition of the live oil from the oil-filled pores to the vacated pores near the nominal VAPEX interface. These two factors enhance the live oil production rate during the VAPEX process. The solvent content of the live oil, the solvent-to-oil ratio (SOR), and the residual oil saturation did not correlate strongly with the proportion of the oil-wet beads in the packing. The average solvent content of the live oil and the residual oil saturation were measured to be 48% by weight and 7% by volume respectively.  相似文献   

10.
The Effect of Wettability on Three-Phase Relative Permeability   总被引:3,自引:0,他引:3  
We study three-phase flow in water-wet, oil-wet, and fractionally-wet sandpacks. We use CT scanning to measure directly the oil and water relative permeabilites for three-phase gravity drainage. In an analogue experiment, we measure pressure gradients in the gas phase to determine the gas relative permeability. Thus we find all three relative permeabilities as a function of saturation. We find that the gas relative permeability is approximately half as much in a oil-wet medium than in an water-wet medium at the same gas saturation. The water relative permeability in the water-wet medium and the oil relative permeability in the oil-wet medium are similar. In the water-wet medium the oil relative permeability scales as k roS o 4 for S o>S or, where S or is the waterflood residual oil saturation. With octane as the oil phase, k roS o 2 for S o<S or, while with decane as the oil phase, k ro falls sharply for S o<S or. The water relative permeability in the oil-wet medium resembles the oil relative permeability in the water-wet medium for a non-spreading oil such as decane. These observations can be explained in terms of wetting, spreading, and the pore scale configurations of fluid.  相似文献   

11.
Pore-network modelling is commonly used to predict capillary pressure and relative permeability functions for multi-phase flow simulations. These functions strongly depend on the presence of fluid films and layers in pore corners. Recently, van Dijke and Sorbie (J. Coll. Int. Sci. 293:455–463, 2006) obtained the new thermodynamically derived criterion for oil layers existence in the pore corners with non-uniform wettability caused by ageing. This criterion is consistent with the thermodynamically derived capillary entry pressures for other water invasion displacements and it is more restrictive than the previously used geometrical layer collapse criterion. The thermodynamic criterion has been included in a newly developed two-phase flow pore network model, as well as two versions of the geometrical criterion. The network model takes as input networks extracted from pore space reconstruction methods or CT images. Furthermore, a new n-cornered star shape characterization technique has been implemented, based on shape factor and dimensionless hydraulic radius as input parameters. For two unstructured networks, derived from a Berea sandstone sample, oil residuals have been estimated for different wettability scenarios, by varying the contact angles in oil-filled pores after ageing from weakly to strongly oil-wet. Simulation of primary drainage, ageing and water invasion show that the thermodynamical oil layer existence criterion gives more realistic oil residual saturations compared to the geometrical criteria. Additionally, a sensitivity analysis has been carried out of oil residuals with respect to end-point capillary pressures. For strongly oil-wet cases residuals increase strongly with increasing end-point capillary pressures, contrary to intermediate oil-wet cases.  相似文献   

12.
13.
We apply steady-state capillary-controlled upscaling in heterogeneous environments. A phase may fail to form a connected path across a given domain at capillary equilibrium. Moreover, even if a continuous saturation path exists, some regions of the domain may produce disconnected clusters that do not contribute to the overall connectivity of the system. In such cases, conventional upscaling processes might not be accurate since identification and removal of these isolated clusters are extremely important to the global connectivity of the system and the stability of the numerical solvers. In this study, we address the impact of percolation during capillary-controlled displacements in heterogeneous porous media and present a comprehensive investigation using random absolute permeability fields, for water-wet, oil-wet and mixed-wet systems, where J-function scaling is used to relate capillary pressure, porosity and absolute permeabilities in each grid cell. Important information is revealed about the average connectivity of the phases and trapping at the Darcy scale due to capillary forces. We show that in oil-wet and mixed-wet media, large-scale trapping of oil controlled by variations in local capillary pressure may be more significant than the local trapping, controlled by pore-scale displacement.  相似文献   

14.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

15.
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding. Above the scale of representative elementary volume (REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures, but the studies alike are rarely conducted at the pore-scale, at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations. In this paper, dissipative particle dynamics (DPD), one of mesoscopic fluid particle methods, is introduced to simulate the pore-scale flow in chemical flooding processes. The theoretical background, mathematical formulation and numerical approach of DPD are presented. The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation, and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively. The selected parameters of those simulations are given in details. These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.  相似文献   

16.
Drainage displacements in three-phase flow under strongly wetting conditions are completely described by a simple generalisation of well understood two-phase drainage mechanisms. As in two-phase flow, the sequence of throat invasions in three-phase flow is determined by fluid connectivity and threshold capillary pressure for the invading interface. Flow through wetting and intermediate spreading films is important in determining fluid recoveries and the progress of the displacement in three-phase flow. Viscous pressure drops associated with flow through films give rise to multiple filling and emptying of pores. A three-phase, two-dimensional network model based on the pore-scale fluid distributions and displacement mechanisms reported by Øren et al. and which accounts for flow through both wetting and intermediate fluid films is shown to correctly predict all the important characteristics of three-phase flow observed in glass micromodel experiments.  相似文献   

17.
We examine the effect of capillary and viscous forces on the displacement of one fluid by a second, immiscible fluid across and along parallel layers of contrasting porosity, and relative permeability, as well as previously explored contrasts in absolute permeability and capillary pressure. We consider displacements with wetting, intermediate-wetting and non-wetting injected phases. Flow is characterized using six independent dimensionless numbers and a dimensionless storage efficiency, which is numerically equivalent to the recovery efficiency. Results are directly applicable to geologic carbon storage and hydrocarbon production. We predict how the capillary–viscous force balance influences storage efficiency as a function of a small number of key dimensionless parameters, and provide a framework to support mechanistic interpretations of complex field or experimental data, and numerical model predictions, through the use of simple dimensionless models. When flow is directed across layers, we find that capillary heterogeneity traps the non-wetting phase, regardless of whether it is the injected or displaced phase. However, minimal trapping occurs when the injected phase is intermediate-wetting or when high-permeability layers contain a smaller moveable volume of fluid than low-permeability layers. A dimensionless capillary-to-viscous number defined using the layer thickness rather than the more commonly used system length is most relevant to predict capillary heterogeneity trapping. When flow is directed along layers, we show that, regardless of wettability, increasing capillary crossflow reduces the distance between the leading edges of the injected phase in each layer and increases storage efficiency. This may be counter-intuitive when the injected phase is non-wetting. Crossflow has a significant impact on storage efficiency only when high-permeability layers contain a smaller moveable volume of fluid than low-permeability layers. In that case, capillary heterogeneity traps the wetting phase, regardless of whether it is the injected or displaced phase.  相似文献   

18.
Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the waterwetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.  相似文献   

19.
Using a numerical technique, known as the lattice-Boltzmann method, we study immiscible three-phase flow at the pore scale. An important phenomenon at this scale is the spreading of oil onto the gas–water interface. In this paper, we recognize from first principles how injected gas remobilizes initially trapped oil blobs. The two main flow mechanisms which account for this type of remobilization are simulated. These are the double-drainage mechanism and (countercurrent) film flow of oil. The simulations agree qualitatively with experimental findings in the literature. We also simulate steady-state three-phase flow (fixed and equal saturations) in a small segment of a waterwet porous medium under both spreading and nonspreading conditions. The difference between the two conditions with respect to the coefficients in the generalized law of Darcy (which also includes viscous coupling) is investigated.  相似文献   

20.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号