首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The reaction of 2,5-dimethylfuran (DMF) with H-atoms was studied using a potential energy surface calculated at the CBS-QB3 level of theory and master equation/RRKM modeling. Hydrogen abstraction by H-atom and hydrogen additions on DMF were considered. As the decomposition pathways of the initial adducts were unknown, a large number of decomposition routes was explored for these adducts. An important number of interconnected product channels were found and preliminary master equation calculations were performed to select the crucial wells and exit channels. The ipso substitution DMF + H  methylfuran (MF) + CH3 and the formation of 1,3-butadiene and acetyl radical (CH3CO) were found to be the major product channels in the addition process. The total calculated rate constant was found in good agreement with experimental data and is nearly pressure-independent. A small sensitivity to pressure was found for the computed branching ratios. At 1 bar, the yields of the two product channels of the addition process are maximal at 1100 K with computed branching ratios of 39% (MF + CH3) and 27% (1,3-C4H6 + CH3CO). Above 1300 K, hydrogen abstraction by H-atom becomes dominant and reaches a branching ratio of 56% at 2000 K.  相似文献   

2.
The perovskite BaCe(0.9 ? x)ZrxY0.1O(3 ? δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in the sample. The direct current conductivity has been measured as a function of oxygen partial pressure, at a water vapour partial pressure of 0.015 atm. The total conductivity has been resolved into a p-type and an ionic component using a fitting procedure appropriate to the assumed defect model. An estimation of the protonic component was made by assuming a conductivity isotope effect between 1.4 and 1.8. The total conductivity, obtained using impedance spectroscopy has been measured as a function of temperature in the water and heavy water exchanged states. The activation energy has been found to be 0.56 eV to 0.59 eV in the water exchanged state with values 0.03 to 0.04 eV higher in the heavy water exchanged state. Impedance spectra measured at 200 °C showed a reduction in grain boundary resistivity with increasing cerium content. The stability of the compounds to carbon dioxide has been studied by thermogravimetry.  相似文献   

3.
Recent interests in mixed metal oxide nanostructured materials especially IrxRu1−xO2 compounds have been mainly driven by the technological application as electrocatalyst and electrode materials. We present room temperature Raman scattering results of single crystalline IrxRu1−xO2 (0 ≤ x ≤ 1) nanowires grown by atmospheric pressure chemical vapor deposition. We observed that the Eg, the A1g, and the B2g phonon modes of a single IrxRu1−xO2 nanowire are blue-shifted linearly with respect to the Ir contents from which we could get stoichiometry information. We also observed that the asymmetric lineshape and the broadening of the full width at half maximum of the Eg mode that involves the out-of-plane oxygen vibration. The unusual asymmetric broadening of the Eg phonon can be explained by the activation of the non-zone-center phonons due to substitutional disorder present in the system. We also found that there is a mixed mode of the A1g and the B2g phonons due to the substitutional disorder, in the range of 630–750 cm−1.  相似文献   

4.
《Solid State Ionics》2009,180(40):1613-1619
Materials of the LiTi2  xZrx(PO4)3 series (0  x  2) were prepared and characterized by powder X-ray (XRD) and neutron diffraction (ND), 7Li and 31P Nuclear Magnetic Resonance (NMR) and Electric Impedance techniques. In samples with x < 1.8, XRD patterns were indexed with the rhombohedral Rc space group, but in samples with x  1.8, XRD patterns display the presence of rhombohedral and triclinic phases. The Rietveld analysis of the LiTi1.4Zr0.6(PO4)3 neutron diffraction (ND) pattern provided structural information about intermediate compositions. For low Zr contents, compositions deduced from 31P MAS-NMR spectra are similar to nominal ones, indicating that Zr4+ and Ti4+ cations are randomly distributed in the NASICON structure. At increasing Zr contents, differences between nominal and deduced compositions become significant, indicating some Zr segregation in the triclinic phase. The substitution of Ti4+ by Zr4+ stabilizes the rhombohedral phase; however, electrical performances are not improved in expanded networks of Zr-rich samples. Below 300 K, activation energy of all samples is near 0.36 eV; however, above 300 K, activation energy is near 0.23 eV in Ti-rich samples and close to 0.36 eV in Zr-rich samples. The analysis of electrical data suggests that the amount of charge carriers and entropic terms are higher in Zr-rich samples; however, the increment of both parameters does not compensate lower activation energy terms of these samples. As a consequence of different contributions, the bulk conductivity of Zr-rich samples, measured at room temperature, is one order of magnitude lower than that measured in Ti-rich samples.  相似文献   

5.
6.
In this work, the electronic structure and disorder effects in copper halides alloys are studied by means of the full potential linearized augmented plane wave (FLAPW) method. The calculated bowing parameter shows that the main contribution is due to the relaxation effects, though the charge transfer remains relatively significant, while the volume deformation contribution is negligible. The total bowing is found to be small in the three studied alloys. Results agree well with experimental and available theoretical works.  相似文献   

7.
8.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

9.
10.
Ichiro Shiraki  Kazushi Miki 《Surface science》2011,605(13-14):1304-1307
SrTiO3(100)  (√5 × √5)  R26.6 surfaces were studied by means of high-resolution scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. By varying the bias voltage in the occupied state, it was possible to observe the arrangement of titanium and oxygen atoms in the unit cells of a (√5 × √5) surface superstructure, which revealed that the TiO2 layer is the terminating plane of the (√5 × √5) surface. In the STM images, peculiar protrusions were seen at the oxygen fourfold hollow site responsible for √5 × √5 periodicity. The protrusions are asymmetrical in contrast, which would be an important consideration in proposing accurate structural models for (√5 × √5) surface superstructures.  相似文献   

11.
Nonstoichiometric variation of oxygen content in La2 ? xSrxNiO4 + δ (x = 0, 0.1, 0.2, 0.3, 0.4) and decomposition P(O2) were determined by means of high temperature gravimetry and coulometric titration. The measurements were carried out in the temperature range between 873 and 1173 K and the P(O2) range between 10? 20 and 1 bar. La2 ? xSrxNiO4 + δ showed the oxygen excess and the oxygen deficient compositions depending on P(O2), temperature, and the Sr content. The value of partial molar enthalpy of oxygen approaches zero as δ increases in the oxygen excess region, which indicate that the interstitial oxygen formation reaction is suppressed as δ increase. The relationship between δ and logP(O2) were analyzed by two types of defect equilibrium models. One is a localized electron model, and the other is a delocalized electron model. Both models can well explain the oxygen nonstoichiometry of La2 ? xSrxNiO4 + δ with a regular solution approximation.  相似文献   

12.
Co-doping B-site of perovskite oxide LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCFO) with Cr6+ and Mg2+ ions has been attempted in this research for revamping chemical stability and oxygen ionic conductivity of this mixed conducting oxide. It is known that partial substitution for B-site cations of LSCFO by Cr gives rise to a significant improvement on chemical and thermal stability of the perovskite oxide. On the basis of this doped structure, introduction of an immaterial dose of Mg2+ ion into its B-site results in a microstructure consisting of smaller grains with higher density than its precursor. Furthermore, the resulting perovskite oxide La0.19Sr0.8Fe0.69Co0.1Cr0.2 Mg0.01O3 ? δ (LSFCCMO) displays higher O2? conductivity than the solely Cr-doped LSCFO besides the improved chemical stability against reduction in 5% CH4/He stream at 850 °C. A detailed examination of the oxidation states of B-site transition metal ions by XPS has also been conducted as a part of structural characterizations of LSFCCMO. The assessment of relative O2? conductivity shows that the grain boundary area plays a more important role than the bulk phase in facilitating ion transport, but with comparable boundary areas the higher densification level is favorable.  相似文献   

13.
We have performed a first principle study of structural and phase stabilization of β-La2 ? xLxMo2O9 (L = Gd, Sm, Nd and Bi) and β-La2Mo2 ? yMyO9 (M = Cr, W). The substitutional-site properties were discussed in terms of the empirical parameter, bond valence sums (BVS), which characterizes the interactions between atoms and its nearest-neighbor atoms and correlates well with the stability of the structure. We found that Gd, Sm and Nd atoms prefer the crystallographic sites with largest BVS values. The nonlinear dependence of cell parameter on W content in W-doped systems results from the nonlinear change in Mo/W–O bond length with W content. The decrease of cohesive energy and the deviation of BVS values from the expected values upon the Gd, Sm, Nd and W-doped concentration help us understand the experimentally observed stabilization of the β phase to lower temperatures in these doped system. The O ion diffusion properties in W-doped systems have been studied using the nudged elastic band method and the dimer method. We found that, W-doping leads to the obvious increase in the energy barriers of O ion concerted diffusion. In addition, there is a remarkable decrease in the difference of energy barriers between two diffusion channels involving O(1) ion, which sheds light on only one relaxation peak in the mechanical relaxation measurement in W-doped system, compared to undoped system.  相似文献   

14.
《Solid State Ionics》2009,180(40):1702-1709
Nanopowders of Ca1  xEuxMnO3 (0.1  x  0.4) manganites were synthesized as a single phase using the auto gel-combustion method. The citrate method shows to be simple and appropriate to obtain single phases avoiding segregation or contamination. The Ca1  xEuxMnO3 system has been synthesized at 800 °C during 18 h, against the conventional method of mixing oxides used to obtain these materials at higher temperatures of synthesis. The formation reaction was monitored by X-ray diffraction (XRD) analysis and an infrared absorption technique (FTIR). The polycrystalline powders are characterised by nanometric particle size, ∼ 48 nm as determined from X-ray line broadening analysis using the Scherrer equation. Morphological analysis of the powders, using the scanning electron microscope (SEM), revealed that all phases are homogeneous and the europium-substituted samples exhibit a significant decrease in the grain size when compared with the undoped samples. The structure refinement by using the Rietveld method indicates that the partial calcium substitution by europium (for x  0.3) modifies the orthorhombic structure of the CaMnO3 perovskite towards a monoclinic phase. All manganites show two active IR vibrational modes around 400 and 600 cm 1. The high temperature dependence of electrical resistivity (between 25 and 600 °C) allows us to conclude that all the samples exhibit a semiconductor behaviour and the europium causes a decrease in the electrical resistivity by more than one order of magnitude. The results can be well attributed to the Mn4+/Mn3+ ratio.  相似文献   

15.
The radiation stability of the mixed crystals M1 ? xRxF2 + x (M = Ca, Sr, Ba) depends on types of the alkaline-earth and rare-earth ions. Different to Eu- and Ce-containing systems, M1 ? xPrxF2 + x solid solutions have a low radiation resistance, which may be associated with hole trapping on praseodymium ion according to the reaction Pr3+  Pr4+ which is typical for praseodymium. The coloration efficiency of M1 ? xPrxF2 + x crystals grows in the row Ca  Sr  Ba, which is explained satisfactorily within the model of rare-earth clusters, the structure of which is determined by the ratio of the base alkaline-earth cation to the praseodymium ion radii.  相似文献   

16.
The europium dopant concentration in strontium cerate was studied to achieve maximum hydrogen permeation. In order to determine high ambipolar conductivity, total conductivity and open circuit potential measurements were performed. Among the three different compositions of Eu-doped SrCe1 ? xEuxO3 ? δ (x = 0.1, 0.15 and 0.2) studied, SrCe0.9Eu0.1O3 ? δ showed highest total conductivity between 600 °C and 900 °C. However, transference number measurements showed increasing electronic conductivity with increasing dopant concentration and a stronger temperature dependence for electronic conduction. Therefore, the highest ambipolar conductivity was obtained over the compositional range from SrCe0.85Eu0.15O3 ? δ to SrCe0.8Eu0.2O3 ? δ depending on temperature. Finally, the hydrogen permeation flux was calculated based on the ambipolar conductivity and compared with experimental results.  相似文献   

17.
Simranjit Singh  R.S. Kaler 《Optik》2012,123(24):2199-2203
In this paper, we investigated the performance of multi terabits DWDM system consisting of hybrid optical amplifier RAMAN-EDFA for different data format such as non-return to zero (NRZ), return to zero (RZ) and differential phase shift keying (DPSK). We find that in 64 × 10 and 96 × 10 Gbps, RZ is more adversely affected by nonlinearities, where as NRZ and DPSK is more affected by dispersion. We further show that RZ provide good quality factor (13.88 dB and 15.93 dB for 64 and 96 channels), less eye closure (2.609 dB and 3.191 dB for 64 and 96 channels) and acceptable bit error rate (3.89 × 108 and 1.24 × 109 for 64 and 96 channels) at the respective distance as compare to other existing modulation format. We further investigated the maximum single span distance covered by using existing data formats.  相似文献   

18.
The adsorption of the small amounts of tantalum on Si (111)-7 × 7 reconstructed surface is investigated systematically using scanning tunneling microscopy and tunneling spectroscopy combined with first-principles density functional theory calculations. We find out that the moderate annealing of the Ta covered surface results in the formation of clusters of the butterfly-like shape. The clusters are sporadically distributed over the surface and their density is metal coverage dependent. Filled and empty state STM images of the clusters differ strongly suggesting the existence of covalent bonds within the cluster. Tunneling spectroscopy measurements reveal small energy gap, showing semiconductor-like behavior of the constituent atoms. The cluster model based on experimental images and theoretical calculations has been proposed and discussed. Presented results show that Ta joins the family of adsorbates, that are known to form magic clusters on Si (111)-7 × 7, but its magic cluster has the structural and electronic properties that are different from those reported before.  相似文献   

19.
J.Q. Song  T. Ding  J. Li  Q. Cai 《Surface science》2010,604(3-4):361-365
The current–voltage (IV) characteristics of the nanosized metal–semiconductor contacts formed between the epitaxially grown ErSi2 islands and p-Si(0 0 1) substrate are measured in situ by the scanning tunneling microscope. Experimental results show that the current densities passing through the nanocontacts are five orders of magnitude larger than that of the macroscopic ones and have an obvious dependence on the contact area. Especially, it is found that I–V characteristics of the contacts are sensitive to the sample surface adsorption. Our investigations indicate that surface conduction plays an important role in the electrical transport process from ErSi2 islands to the Si(0 0 1) substrate. Furthermore, for the nanocontacts with surface currents suppressed effectively, the ideality factor and the effective Schottky barrier height are estimated by using the standard thermionic emission model. Our analysis suggests that the current through the interface between ErSi2 nanoislands and the p-Si(0 0 1) substrate is enhanced due to the effects of tunneling and image force lowering.  相似文献   

20.
Using the experimental data obtained mainly with the scanning tunneling microscopy observations, density functional theory calculations have been applied to examine an atomic structure of the Ag/Si(100)-c(6 × 2) reconstruction. A set of structural models has been proposed having a similar Si(100) substrate reconstruction which incorporates rows of top Si atom dimers and troughs in between the rows. Stability of about twenty models with various Ag coverage ranging from 1/6 to 1 ML has been tested, that allows reducing the number of plausible models to four. Two of these four models have been attributed to the “regular” intrinsic Ag/Si(100)-c(6 × 2) reconstruction, while the other two to its defect-induced modification. The latter is observed in the local areas near defects and domain boundaries and exhibits 3 × 2 periodicity. Comparing the results of calculations with the experimental STM images, it has been concluded that while the Si(100) substrate reconstruction is solid, the Ag subsystem is flexible due to the presence of the lightly bonded mobile Ag atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号