首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the need to determine the dependencies of two-phase flow in a wide range of applications from carbon dioxide sequestration to enhanced oil recovery, we have developed a standard two-dimensional, pore-level model of immiscible drainage, incorporating viscous and capillary effects. This model has been validated through comparison with several experiments. For a range of stable viscosity ratios (M = μ injected,nwf/μ defending, wf ≥ 1), we had increased the capillary number, N c and studied the way in which the flows deviate from fractal capillary fingering at a characteristic time and become compact for realistic capillary numbers. This crossover has enabled predictions for the dependence of the flow behavior upon capillary number and viscosity ratio. Our results for the crossover agreed with earlier theoretical predictions, including the universality of the leading power-law indicating its independence of details of the porous medium structure. In this article, we have observed a similar crossover from initial fractal viscous fingering (FVF) to compact flow, for large capillary numbers and unstable viscosity ratios M < 1. In this case, we increased the viscosity ratio from infinitesimal values, and studied the way in which the flows deviate from FVF at a characteristic time and become compact for non-zero viscosity ratios. This crossover has been studied using both our pore-level model and micro-fluidic flow-cell experiments. The same characteristic time, τ = 1/M 0.7, satisfactorily describes both the pore-level results for a range of large capillary numbers and the micro-fluidic flow cell results. This crossover should lead to predictions similar to those mentioned above.  相似文献   

2.
Recent experimental work has shown that the pore-scale flow mechanism during steady-state two-phase flow in porous media is ganglion dynamics (GD) over a broad and practically significant range of the system parameters. This observation suggests that our conception and theoretical treatment of fractional flow in porous media need careful reconsideration. Here is proposed a mechanistic model of steady-state two-phase flow in those cases where the dominant flow regime is ganglion dynamics. The approach is based on the ganglion population balance equations in combination with a microflow network simulator. The fundamental information on the cooperative flow behavior of the two fluids at the scale of a few hundred pores is expressed through the system factors, which are functions of the system parameters and are calculated using the simulator. These system factors are utilized by the population balance equations to predict the macroscopic behavior of the process. The dependence of the conventional relative permeability coefficients not only on the wetting fluid saturation Swbut also on the capillary number, Ca, the viscosity ratio the wettability (0 a, 0 r), the coalescence factor, Co, as well as the porous medium geometry and topology is explained and predicted on a mechanistic basis. Sample calculations have been performed for steady-state fully developed (SSFD) and steady-state nonfully developed (SSnonFD) flow conditions. The number distributions of the moving and the stranded ganglia, the mean ganglion size, the fraction of the nonwetting fluid in the form of mobile ganglia, the ratio of the conventional relative permeability coefficients and the fractional flows are studied as functions of the system parameters and are correlated with the flow phenomena at pore level and the system factors.  相似文献   

3.
In many applications of two-phase flow in porous media, a wetting phase is used to displace through a network of pore conduits as much as possible of a non-wetting phase, residing in situ. The energy efficiency of this physical process may be assessed by the ratio of the flow rate of the non-wetting phase over the total mechanical power externally provided and irreversibly dissipated within the process. Fractional flow analysis, extensive simulations implementing the DeProF mechanistic model, as well as a recent retrospective examination of laboratory studies have revealed universal systematic trends of the energy efficiency in terms of the actual independent variables of the process, namely the capillary number, Ca, and the flow rate ratio, r. These trends can be cast into an energy efficiency map over the (Ca, r) domain of independent variables. The map is universal for all types of non-wetting/wetting phase porous medium systems. It demarcates the efficiency of steady-state two-phase flow processes in terms of pertinent system parameters. The map can be used as a tool for designing more efficient processes, as well as for the normative characterization of two-phase flows, as to the predominance of capillary or viscous effects. This concept is based on the existence of a unique locus of critical flow conditions, for which the energy efficiency takes locally maximum values. The locus shape depends on the physicochemical characteristics of the non-wetting phase/wetting phase/porous medium system, and it shows a significant mutation as the externally imposed flow conditions change the type of flow, from capillary- to viscosity-dominated. The locus can be approached by an S-type functional form in terms of the capillary number and the system properties (viscosity ratio, wettability, pore network geometry, etc.), suggesting that formative criteria can be derived for flow characterization in any system. A new, extended definition of the capillary number is also proposed that effectively takes into account the critical properties of all the system constituents. When loci of critical flow conditions pertaining to processes with different viscosity ratio in the same pore network, are expressed in terms of this true-to-mechanism capillary number, they collapse into a unique locus. In this context, a new methodology for the effective characterization of pore networks is proposed.  相似文献   

4.
Based on thermodynamic considerations, we derive a set of equations relating the seepage velocities of the fluid components in immiscible and incompressible two-phase flow in porous media. They necessitate the introduction of a new velocity function, the co-moving velocity. This velocity function is a characteristic of the porous medium. Together with a constitutive relation between the velocities and the driving forces, such as the pressure gradient, these equations form a closed set. We solve four versions of the capillary tube model analytically using this theory. We test the theory numerically on a network model.  相似文献   

5.
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w t h(t/ts). The dynamical exponent, , describing the front width evolution as function of time, was estimated to = 1.0. The results are compared to experimental data of Frette and co-workers.  相似文献   

6.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

7.
A new formulation is presented for the modeling of immiscible compressible two-phase flow in porous media taking into account gravity, capillary effects, and heterogeneity. The formulation is intended for the numerical simulation of multidimensional flows and is fully equivalent to the original equations, contrary to the one introduced in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986). The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. A finite volume method is used to solve the global pressure equation and the saturation equation for the water and gas phase in the context of gas migration through engineered and geological barriers for a deep repository for radioactive waste. Numerical results for the one-dimensional problem are presented. The accuracy of the fully equivalent fractional flow model is demonstrated through comparison with the simplified model already developed in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986).  相似文献   

8.
The flow of fluids in heterogeneous porous media is modelled by regarding the hydraulic conductivity as a stationary random space function. The flow variables, the pressure head and velocity field are random functions as well and we are interested primarily in calculating their mean values. The latter had been intensively studied in the past for flows uniform in the average. It has been shown that the average Darcy's law, which relates the mean pressure head gradient to the mean velocity, is given by a local linear relationship. As a result, the mean head and velocity satisfy the local flow equations in a fictitious homogeneous medium of effective conductivity. However, recent analysis has shown that for nonuniform flows the effective Darcy's law is determined by a nonlocal relationship of a convolution type. Hence, the average flow equations for the mean head are expressed as a linear integro-differential operator. Due to the linearity of the problem, it is useful to derive the mean head distribution for a flow by a source of unit discharge. This distribution represents a fundamental solution of the average flow equations and is called the mean Green function G d (x). The mean head G d(x) is derived here at first order in the logconductivity variance for an arbitrary correlation function (x) and for any dimensionality d of the flow. It is obtained as a product of the solution G d (0)(x) for source flow in unbounded domain of the mean conductivity K A and the correction d (x) which depends on the medium heterogeneous structure. The correction d is evaluated for a few cases of interest.Simple one-quadrature expressions of d are derived for isotropic two- and three-dimensional media. The quadratures can be calculated analytically after specifying (x) and closed form expressions are derived for exponential and Gaussian correlations. The flow toward a source in a three-dimensional heterogeneous medium of axisymmetric anisotropy is studied in detail by deriving 3 as function of the distance from the source x and of the azimuthal angle . Its dependence on x, on the particular (x) and on the anisotropy ratio is illustrated in the plane of isotropy (=0) and along the anisotropy axis ( = /2).The head factor k * is defined as a ratio of the head in the homogeneous medium to the mean head, k *=G d (0)/G d= d –1. It is shown that for isotropic conductivity and for any dimensionality of the flow the medium behaves as a one-dimensional and as an effective one close and far from the source, respectively, that is, lim x0 k *(x) = K H/K A and lim x k *(x) = K efu/K A, where K A and K H are the arithmetic and harmonic conductivity means and K efu is the effective conductivity for uniform flow. For axisymmetric heterogeneity the far-distance limit depends on the direction. Thus, in the coordinate system of (x) principal directions the limit values of k * are obtained as . These values differ from the corresponding components of the effective conductivities tensor for uniform flow for = 0 and /2, respectively. The results of the study are applied to solving the problem of the dipole well flow. The dependence of the mean head drop between the injection and production chambers on the anisotropy of the conductivity and the distance between the chambers is analyzed.  相似文献   

9.
10.
In this article, we investigate two strategies for coarsening fractured geological models. The first approach, which generates grids that resolve the fractures, is referred to as explicit fracture-matrix separation (EFMS). The second approach is based on a non-uniform coarsening strategy introduced in Aarnes et al. (Adv Water Resour 30(11):2177–2193, 2007a). A series of two-phase flow simulations where the saturation is modeled on the respective coarse grids are performed. The accuracy of the resulting solutions is examined, and the robustness of the two strategies is assessed with respect to number of fractures, degree of coarsening, well locations, phase viscosities, and fracture permeability. The numerical results show that saturation solutions obtained on the non-uniform coarse grids are consistently more accurate than the corresponding saturation solutions obtained on the EFMS grids. The numerical results also reveal that it is much easier to tune the upscaling factor with the non-uniform coarsening approach.  相似文献   

11.
Network Modeling of Non-Darcy Flow Through Porous Media   总被引:7,自引:0,他引:7  
Darcy's law is inadequate for describing high-velocity gas flow in porous media, which occurs in the near well-bore region of high capacity gas and condensate reservoirs. This study is directed at understanding the non-Darcy flow behavior. A pore-level network model has been developed to describe high velocity flow. The inputs to the model are pore size distributions and network coordination numbers. The outputs are permeability, non-Darcy coefficient, tortuousity and porosity. The additional pressure gradient term is found to be proportional to the square of the velocity in accordance with the Forchheimer's equation. The correlation between the non-Darcy coefficient and other flow properties (the permeability, the porosity and the tortuousity) is found to depend on the morphological parameters being changed. General correlations are derived between these flow properties.  相似文献   

12.
Hysteresis phenomena in multi-phase flow in porous media has been recognized by many researchers and widely believed to have significant effects on the flow. In an attempt to account for these effects, a theoretical model for history-dependent relative permeabilities is considered. This model is incorporated into 1-D two-phase nondiffusive flow system and the corresponding flow is predicted. Flow history is observed to have a notable impact on the saturation profile and fluids breakthrough.  相似文献   

13.
14.
We present a spatial renormalization group algorithm to handle immiscibletwo-phase flow in heterogeneous porous media. We call this algorithmFRACTAM-R, where FRACTAM is an acronym for Fast Renormalization Algorithmfor Correlated Transport in Anisotropic Media, and the R stands for relativepermeability. Originally, FRACTAM was an approximate iterative process thatreplaces the L × L lattice of grid blocks, representing the reservoir,by a (L/2) × (L/2) one. In fact, FRACTAM replaces the original L× L lattice by a hierarchical (fractal) lattice, in such a way thatfinding the solution of the two-phase flow equations becomes trivial. Thistriviality translates in practice into computer efficiency. For N=L ×L grid blocks we find that the computer time necessary to calculatefractional flow F(t) and pressure P(t) as a function of time scales as N1.7 for FRACTAM-R. This should be contrasted with thecomputational time of a conventional grid simulator N2.3. The solution we find in this way is an accurateapproximation to the direct solution of the original problem.  相似文献   

15.
Commonly, capillary pressure–saturation–relative permeability (P cSK r) relationships are obtained by means of laboratory experiments carried out on soil samples that are up to 10–12 cm long. In obtaining these relationships, it is implicitly assumed that the soil sample is homogeneous. However, it is well known that even at such scales, some micro-heterogeneities may exist. These heterogeneous regions will have distinct multiphase flow properties and will affect saturation and distribution of wetting and non-wetting phases within the soil sample. This, in turn, may affect the measured two-phase flow relationships. In the present work, numerical simulations have been carried out to investigate how the variations in nature, amount, and distribution of sub-sample scale heterogeneities affect P cSK r relationships for dense non-aqueous phase liquid (DNAPL) and water flow. Fourteen combinations of sand types and heterogeneous patterns have been defined. These include binary combinations of coarse sand imbedded in fine sand and vice versa. The domains size is chosen so that it represents typical laboratory samples used in the measurements of P cSK r curves. Upscaled drainage and imbibition P cSK r relationships for various heterogeneity patterns have been obtained and compared in order to determine the relative significance of the heterogeneity patterns. Our results show that for micro-heterogeneities of the type shown here, the upscaled P cS curve mainly follows the corresponding curve for the background sand. Only irreducible water saturation (in drainage) and residual DNAPL saturation (in imbibition) are affected by the presence and intensity of heterogeneities.  相似文献   

16.
When determining experimentally relative permeability and capillary pressure as a function of saturation, a self-consistent system of macroscopic equations, that includes Leverett's equation for capillary pressure, is required. In this technical note, such a system of equations, together with the conditions under which the equations apply, is formulated. With the aid of this system of equations, it is shown that, at the inlet boundary of a vertically oriented porous medium, static conditions pertain, and that potentials, because of the definition of potential, are equal in magnitude to pressures. Consequently, Leverett's equation is valid at the inlet boundary of the porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous. Moreover, it is demonstrated that Leverett's equation is valid for flow along the length of a vertically oriented porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous and there are no hydrodynamic effects. However, Leverett's equation is invalid for horizontal, steady-state, forced, countercurrent flow. When such flow is taking place, it is the sum of the pressures, and not the difference in pressures, which is related to capillary pressure.  相似文献   

17.
In this study, non-Darcy inertial two-phase incompressible and non-stationary flow in heterogeneous porous media is analyzed using numerical simulations. For the purpose, a 3D numerical tool was fully developed using a finite volume formulation, although for clarity, results are presented in 1D and 2D configurations only. Since a formalized theoretical model confirmed by experimental data is still lacking, our study is based on the widely used generalized Darcy–Forchheimer model. First, a validation is performed by comparing numerical results of the saturation front kinetics with a semi-analytical solution inspired from the Buckley–Leverett model extended to take into account inertia. Second, we highlight the importance of inertial terms on the evolution of saturation fronts as a function of a suitable Reynolds number. Saturation fields are shown to have a structure markedly different from the classical case without inertia, especially for heterogeneous media, thereby, emphasizing the necessity of a more complete model than the classical generalized Darcy’s one when inertial effects are not negligible.  相似文献   

18.
19.
In this paper we develop and numerically study an improved IMPES method for solving a partial differential coupled system for two-phase flow in a three-dimensional porous medium. This improved method utilizes an adaptive control strategy on the choice of a time step for saturation and takes a much larger time step for pressure than for the saturation. Through a stability analysis and a comparison with a simultaneous solution method, we show that this improved IMPES method is effective and efficient for the numerical simulation of two-phase flow and it is capable of solving two-phase coning problems.  相似文献   

20.
We develop a mathematical model for hysteretic two-phase flow (of oil and water) in waterwet porous media. To account for relative permeability hysteresis, an irreversible trapping-coalescence process is described. According to this process, oil ganglia are created (during imbibition) and released (during drainage) at different rates, leading to history-dependent saturations of trapped and connected oil. As a result, the relative permeability to oil, modelled as a unique function of the connected oil saturation, is subject to saturation history. A saturation history is reflected by history parameters, that is by both the saturation state (of connected and trapped oil) at the most recent flow reversal and the most recent water saturation at which the flow was a primary drainage. Disregarding capillary diffusion, the flow is described by a hyperbolic equation with the connected oil saturation as unknown. This equation contains functional relationships which depend on the flow mode (drainage or imbibition) and the history parameters. The solution consists of continuous waves (expansion waves and constant states), shock waves (possibly connecting different modes) and stationary discontinuities (connecting different saturation histories). The entropy condition for travelling waves is generalized to include admissible shock waves which coincide with flow reversals. It turns out that saturation history generally has a strong influence on both the type and the speed of the waves from which the solution is constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号