首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We present a summary of results of systematic first principles calculations of the electronic and geometric structures of the Cu2O(1 0 0) surface and the process of CO oxidation on this surface (energetics and pathways of adsorption, diffusion and reactions of CO and O2 on the surface). The (p, T) phase diagram of the Cu2O(1 0 0) in equilibrium of with gas phase O2 built using the ab initio thermodynamics approach suggests that the O-terminated surface is preferred over the Cu-terminated one within the entire ranges of pressures and temperatures in which the compound exists. Metastable Cu-terminated Cu2O(1 0 0) is found to undergo a surface reconstruction in agreement with experiment. We find CO to oxidize spontaneously on the O-terminated Cu2O(1 0 0) surface by consuming surface O atoms. Our calculations also show that the surface O-vacancies left in the course of the CO oxidation can be easily filled with dissociative adsorption of the gas phase O2 molecules, which are usually present in reaction environment.  相似文献   

2.
In this report, SrTi(1 ? x)Fe(x)O(3 ? δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STFx (0  x  1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0–1) on the crystal structure and chemical state of the STFx have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STFx by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STFx oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STFx perovskite structure is composed of a mixture of Fe3+ and Fe4+ (SrTi(1 ? x)[Fe3+, Fe4+](x)O(3 ? δ)). When the content x of iron doping was increased, the amount of Fe3+ and Fe4+ increased significantly and the oxygen lattice decreased on the surface of STFx oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased.  相似文献   

3.
First-principles calculations are employed to study the structural and magnetic properties of fully-relaxed cubic Fe4N(0 0 1) surfaces with both Fe2- and Fe2N-termination. The results of surface stability calculations show that the (0 0 1) surface of Fe4N is most possibly existing with Fe2N-termination. Slab structures have more localized features in the density of states especially for the Fe2N-terminated surface due to structure relaxation. The average magnetic moments of Fe atoms increase with increasing thickness of slabs. The calculated interlayer distances indicate that the decreases of d12 and d23 result in stronger hybridization and shorter bond distances between Fe2 atom in the second layer and other atoms in surface or the third layers, which lead to variation of magnetic moments with different slab thicknesses.  相似文献   

4.
B.W. Chang  J.P. Chou  M.F. Luo 《Surface science》2011,605(11-12):1122-1128
With density-functional calculations we have investigated adsorption and diffusion of an Au atom and an Au2 dimer on a θ-Al2O3(001) surface. The surface structure of θ-Al2O3(001) has an armchair-like configuration containing flat and trench areas and the Aun (n = 1 or 2) cluster prefers to adsorb on the flat area. A single Au atom adsorbs on an O–Al bridge site with adsorption energy 0.35 eV, whereas an Au2 dimer bonds to the oxide with adsorption energy 0.78 eV, with one Au coordinated singly to a surface O. Formation of Au2 from Au1 is favored, with a negligible energy barrier. The calculated energy barriers for diffusion indicate that an Au atom diffuses more rapidly than an Au2 dimer but both prefer to diffuse anisotropically, along the flat area of the θ-Al2O3(001) surface.  相似文献   

5.
C. Rohmann  J.B. Metson  H. Idriss 《Surface science》2011,605(17-18):1694-1703
The adsorption of CO on α-Al2O3(0001) was studied using the DFT-GGA computational method and on α-Al2O3 powder experimentally by Infra red spectroscopy. The core and valence level regions of α-Al2O3(0001) single crystal surface were also studied experimentally. Ar ions sputtering of the surface results in a slight but reproducible decrease in the XPS O2p lines in the valence band regions due to preferential removal of surface (and near surface) O atoms. Core level XPS O1s and Al2p further confirmed oxygen depletion with an associated surface stoichiometry close to Al2O2.9. The adsorption energy of CO was computed and found equal to 0.52 eV for θ = 0.25, it decreased to 0.42 eV at θ = 1. The IR frequency of νCO was also computed and in all cases it was blue shifted with respect to gas phase CO. The shift, Δν, decreased with increasing coverage where it was found equal to 56 cm? 1 for θ = 0.25 and decreased to 30 cm? 1 for θ = 1. Structural analyses indicated that the change in the adsorption energy and the associated frequency shift is due to surface relaxation upon adsorption. Experimentally the adsorption of CO gave rise to one main IR peak at 2154 cm? 1 at 0.3 Torr and above. Two far smaller peaks are also seen at lower pressures of 0.03–0.2 Torr at 2189 and 2178 cm? 1. The isosteric heat of adsorption was computed for the IR band at 2154 cm? 1 and was found equal to 0.2 eV which did not change with coverage in the investigated range up to θ = 0.6.  相似文献   

6.
We have compared the adsorption properties of small Aun (n = 1–8) nanoparticles on the defect-free (stoichiometric) and defective (partially reduced) brookite TiO2(210) and anatase TiO2(101) surfaces using density functional theory calculations. The interaction between Au atoms and anatase TiO2(101) was determined to be quite weak and small Aun particles grown at defects (O vacancies) prefer extended 2D structures. By contrast, dispersion and 3D configurations appear to be favored at brookite TiO2(210) for Aun nanoparticles due to their strong interaction. Calculations of CO oxidation at Aun (n = 6–8) particles supported at defective brookite TiO2(210) show that occurrence of protruding low-coordinated Au atoms is essential for favorable CO adsorption and subsequent reaction with O2. In particular, the configuration of the Aun nanoparticles can determine the energetics in the formation of active Au atoms, and their mobility also affects the reaction between CO and O2 (or O).  相似文献   

7.
The chemisorption of water (H2O and D2O) on a LaB6(100) surface was studied with reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS). The clean surface was exposed to H2O and D2O at temperatures from 90 K to room temperature, and spectra were acquired after heating to temperatures as high as 1200 K. It was found that water molecularly adsorbs on the surface at 90 K as a monomer at low coverages and as amorphous solid water at higher coverages. Water adsorbs dissociatively at room temperature to produce surface hydroxyl species as indicated by OH/OD stretch peaks at 3676/2701 cm?1. Room temperature adsorption also reveals low frequency loss features in HREEL spectra near 300 cm?1 that are quite similar to results obtained following the dissociative adsorption of O2. In the latter case, the loss features were attributed to the LaO stretch of O atoms bridge-bonded between two La atoms. In the case of dissociative adsorption of H2O, the low frequency loss features could be due to either the LaO vibrations of adsorbed O or of adsorbed OH.  相似文献   

8.
The electronic structures, stabilities and magnetic properties of the Fe3O4(111), (110) and (001) surfaces have been computed at the level of density functional theory by including the Hubbard parameter (U) for describing the on-site Coulomb interaction of iron 3d electrons. Among the six Fe3O4(111) terminations, the Fetet1 (exposing tetrahedral coordinated iron) and Feoct2 (exposing octahedral coordinated iron) terminations are more stable and have metallic character. For the Fe3O4(110) surface, strong surface distortion has been found; the A-layer termination (exposing tetrahedral coordinated iron) has metallic character, while the B-layer termination (exposing tetrahedral and octahedral coordinated iron) has half-metal character. For the Fe3O4(001) surface, both A-layer (exposing tetrahedral coordinated iron) and B-layer (exposing octahedral coordinated iron) terminations have half-metal character. The surface stability of (111) > (001) > (110) on the basis of the computed surface energies agrees well with the experimental findings, and explains reasonably the observed diversity and complexity of the experiments.  相似文献   

9.
Michael A. Henderson 《Surface science》2010,604(13-14):1197-1201
Temperature programmed desorption (TPD), electron energy loss spectroscopy (ELS) and low energy electron diffraction (LEED) were used to study the interaction of molecular oxygen with the (2 × 1) reconstructed surface of hematite α-Fe2O3(011­2) under UHV conditions. The (2 × 1) surface is formed from vacuum annealing of the ‘ideal’ (1 × 1) surface and possesses Fe2+ surface sites based on ELS. While O2 does not stick to the (1 × 1) surface at 120 K, the amount of O2 that can be reversibly adsorbed at 120 K on the (2 × 1) surface was estimated to be ~ 0.5 ML (where 1 ML is defined as the Fe3+ surface coverage on the ideal (1 × 1) surface), with additional O2 that is irreversibly adsorbed based on subsequent H2O TPD. Molecularly and dissociatively adsorbed O2 modifies the surface chemistry of H2O both in terms of enhanced OH stability (relative to either the (1 × 1) or (2 × 1) surfaces) and in the blocking of H2O adsorption sites. While O2 adsorption at 120 to 300 K does not transform the (2 × 1) surface into the (1 × 1) surface, the influence of O2 on the (2 × 1) surface involves both charge transfer from surface Fe2+ sites and formation of an ordered c(2 × 2) structure resulting from O2 dissociation.  相似文献   

10.
Reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS) have been used to study the adsorption of oxygen on the (100) and (111) surfaces of lanthanum hexaboride. Exposure of the surface at temperatures of 95 K and above to O2 produces atomic oxygen on the surface and yields vibrational peaks in good agreement with those observed in previous HREELS studies. On the La-terminated (100) surface, RAIRS peaks correspond to vibrations of the boron lattice that gain intensity due to a decrease in screening of surface dipoles that accompanies oxygen adsorption. A sharp peak at ~ 734 cm?1 in the HREEL spectrum shows isotopic splitting with RAIRS into two components at 717 and 740 cm?1 with full widths at half maxima of only 12 cm?1. The sharpness of this mode is consistent with its interpretation as a surface phonon that is well separated from both the bulk phonons and other surface phonons of LaB6. On the boron-terminated LaB6(111) surface, broad and weak features are assigned to both vibrations of the boron lattice and of boron oxide. On the (100) surface, oxygen blocks the adsorption sites for CO, and adsorbed CO prevents the dissociative adsorption of O2.  相似文献   

11.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

12.
The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200–1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.  相似文献   

13.
With temperature programmed reaction (TPR) experiments and kinetic Monte Carlo (kMC) simulations of coadsorbed oxygen and HCl on the RuO2(110) surface we studied the thermal stabilization of dissociatively adsorbed oxygen. Due to one-dimensional confinement single surface O atoms can be trapped by surface chlorine atoms so that surface oxygen is not able to desorb from the RuO2(110) surface at the expected temperature of 420 K. Trapped oxygen needs desorption temperatures as high as 700 K where it recombines with bridging O from RuO2(110) to form O2. Kinetic modeling of catalytic reactions with dimensional confinement of their reaction intermediates on the catalyst's surface requires the application of kinetic Monte Carlo simulations which are beyond the mean field approach.  相似文献   

14.
We have used coaxial impact-collision ion scattering spectroscopy (CAICISS) and time-of-flight elastic recoil detection analysis (TOF-ERDA) to investigate the adsorption of atomic hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface. It has been found that the saturation coverage of hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface is about 1.7 ML. Upon saturated adsorption of atomic hydrogen, the √3×√3 surface structure changes to the 1×1 structure. The data of the CAICISS measurements have indicated that as a result of the hydrogen adsorption, Si adatoms on the √3×√3 surface move from T4 to on-top sites.  相似文献   

15.
A polycrystalline silver surface has been studied by synchrotron radiation photoelectron spectroscopy after deep oxidation by microwave discharge in an O2 atmosphere. Oxidized structures with high oxygen content, AgOx with x > 1, have been found on the silver surface after oxidation at 300–400 K. The line shapes observed in the O1s spectra were decomposed into five components and indicated that complex oxidized species were formed. An analysis of the oxidized structures with binding energies, Еb(O1s), greater than 530 eV pointed to the presence of both Ag–O and O–O bonds. We have carried out a detailed experimental study of the valence band spectra in a wide spectral range (up to 35 eV), which has allowed us to register the multicomponent structure of spectra below Ag4d band. These features were assigned to the formation of Ag–O and O–O bonds composed of molecular (associative) oxygen species. DFT model calculations showed that saturation of the defect oxidized silver surface with oxygen leads to the formation of associative oxygen species, such as superoxides, with electrophilic properties and covalent bonding. The high stability of oxygen-rich silver structures, AgOx, can be explained by the formation of small silver particles during the intensive MW oxidation, which can stabilize such oxygen species.  相似文献   

16.
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

17.
The Ir(111) surface is oxidized with gas-phase oxygen atoms under vacuum condition to achieve an oxidation level beyond its saturation coverage for chemisorption. Two surface oxides, rutile IrO2 of (100) domain and corundum Ir2O3 of (001) domain, have been grown at 550 K with different oxygen exposure of 3.6 × 105 L and 7.2 × 105 L respectively. The temperature programmed desorption (TPD) experiment of rutile IrO2(100) shows its desorption curve (at 4 K s? 1) peaks at 750 K, followed by a long tail of less pronounced desorption features. On the other hand, TPD of corundum Ir2O3(001) displays a symmetric trace, peaking at 880 K. Carbon monoxide titration experiments show that adsorbed CO reduces corundum Ir2O3(001) at 400 K, but CO does not adsorb on rutile IrO2(100) and no reduction reaction occurs. Evidently, among the two surface oxides, corundum Ir2O3(001) involves in catalysis of carbon monoxide oxidation, while rutile IrO2(100) does not. The formation of two surface oxides is also compared, we conclude that the atom arrangement favors Ir2O3(001) at the oxide/metal interface.  相似文献   

18.
Michael A. Henderson 《Surface science》2010,604(17-18):1502-1508
The chemistry of Cr(CO)6 on the Fe3O4(111) surface termination of α-Fe2O3(0001) was explored using temperature programmed desorption (TPD), Auger electron spectroscopy (AES), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED) both with and without activation from an oxygen plasma source. No thermal decomposition of Cr(CO)6 was detected on the surface in the absence of O2 plasma treatment, with first layer molecules desorbing in TPD at 215 K from a close-packed overlayer. The interaction of first layer Cr(CO)6 with the Fe3O4(111)-termination was weak, desorbing only ~ 30 K above the leading edge of the multilayer state. Activation of multilayer coverages of Cr(CO)6 with the O2 plasma source at 100 K resulted in complete conversion of the outer Cr(CO)6 layers, presumably to a disordered Cr oxide film, with Cr(CO)6 molecules near the surface left unaffected. Absence of CO or CO2 desorption states suggests that all carbonyl ligands are liberated for each Cr(CO)6 molecule activated by the plasma. AES and SSIMS both show that O2 plasma activation of Cr(CO)6 results in a carbon-free surface (after desorption of unreacted Cr(CO)6). LEED, however, shows that the Cr oxide film was disordered at 600 K and likely O-terminated based on subsequent water TPD. Attempts to order the film at temperatures above 650 K resulted in dissolution of Cr into the α-Fe2O3(0001) crystal based on SSIMS, an observation linked to the Fe3O4(111) termination of the surface and not to the properties of α-Cr2O3/α-Fe2O3 corundum interface. Nevertheless, this study shows that O2 plasma activation of Cr(CO)6 is an effective means of depositing Cr oxide films on surfaces without accompanying carbon contamination.  相似文献   

19.
The surface structure of γ-Fe2O3(111) has been investigated with a range of surface techniques. Two different surface structures were discovered depending upon surface preparation techniques. Sputtering followed by annealing in vacuum produced a reduced surface characterised by a (2 × 2) LEED pattern, whereas sputtering followed by annealing in 1 × 10? 6 mbar oxygen produced a surface characterised by a (√3 × √3)-R30° LEED pattern. The latter appears to be a very low conductivity surface, whereas the former has the band gap expected for maghemite (~ 2.0 eV). We propose that the reduced surface is a magnetite-like layer, whereas the oxidised surface is an Fe2O3-like layer.  相似文献   

20.
A metastable Fe(A) terminated Fe3O4(001) surface was prepared by tailoring the surface preparation conditions. STM, LEIS and LEED are utilized to demonstrate that annealing the Ar+ sputtered surface to 350 °C produces an Fe(A) terminated surface with a (√2 × √2)R45° superstructure. Within the superstructure both single Fe atoms and Fe dimer species are observed. The surface is reoxidized upon annealing to higher temperatures, eventually leading to the recovery of the energetically favorable Jahn–Teller distorted surface at 700 °C. The ability to reproducibly prepare the Fe(A) termination in this simple manner will allow investigations into the structure–function relationship for this important technological material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号