首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Auger electron spectroscopy study on chemistry of the 46.8°(111) twist grain boundary of an Fe–2.3%V alloy showed an extended phosphorus enrichment at temperatures in range of 500 °C and 800 °C. Simultaneously, slight but nearly independent segregation of vanadium was also detected. The standard enthalpy and entropy of grain boundary segregation of phosphorus and vanadium were determined according to the Guttmann model of multicomponent interfacial segregation. Obtained data clearly show that this Σ = 19 coincidence boundary is special (i.e. low energy interface). The data also fit well with the predictive model of grain boundary segregation and confirm that phosphorus segregates interstitially at the grain boundary while vanadium substitutes iron atoms in the interface structure.  相似文献   

2.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

3.
Compressive creep tests have been performed on perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3 ? δ ceramics. The activation energy, stress exponent and inverse grain size exponent of the steady-state creep rates are evaluated at p(O2) = 0.21 ? 105 Pa and 0.01 ? 105 Pa in the stress, temperature and grain size ranges 5–20 MPa, 1078–1208 K and 2.5–17.4 µm, respectively. The results indicate that the creep rate of Ba0.5Sr0.5Co0.8Fe0.2O3 ? δ is controlled by diffusion of cations via both the oxide lattice (bulk diffusion) and along grain boundaries. The creep rate of Ba0.5Sr0.5Co0.8Fe0.2O3 ? δ increases profoundly by more than one order of magnitude at 1153–1178 K, which is tentatively linked with the onset of the hexagonal-to-cubic phase transition in this compound.  相似文献   

4.
The influence of adsorbed S on surface segregation in CuxPd1 ? x alloys (S/CuxPd1 ? x) was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/CuxPd1 ? x CSAF was observed at all bulk compositions, x, but the extent of Cu segregation to the S/CuxPd1 ? x surface was lower than the Cu segregation to the surface of a clean CuxPd1 ? x CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔHseg(x) and ΔSseg(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean CuxPd1 ? x is exothermic (ΔHseg < 0) for all bulk Cu compositions, it is endothermic (ΔHseg > 0) for S/CuxPd1 ? x. Segregation to the S/CuxPd1 ? x surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto CuxPd1 ? x appear to be related to formation of energetically favored PdS bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.  相似文献   

5.
New line lists for isotopically substituted water are presented. Most line positions were calculated from experimentally determined energy levels, while all line intensities were computed using an ab initio dipole moment surface. Transitions for which experimental energy levels are unavailable use calculated line positions. These line lists cover the range 0.05–20 000 cm?1 and are significantly more complete and potentially more accurate than the line lists available via standard databases. All lines with intensities (scaled by isotopologue abundance) greater than 10?29 cm/molecule at 296 K are included, augmented by weaker lines originating from pure rotational transitions. The final line lists contain 39 918 lines for H218O and 27 546 for H217O and are presented in standard HITRAN format. The number of experimentally determined H218O and H217O line positions is, respectively, 32 970 (83% of the total) and 17 073 (62%) and in both cases the average estimated uncertainty is 2×10?4 cm?1. The number of ab initio line intensities with an estimated uncertainty of 1% is 16 621 (42%) for H218O and 13 159 (48%) for H217O.  相似文献   

6.
The effect of in vacuo substrate surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin (<3 nm) oxide films grown on bare Al–1.1 at.% Mg alloy surfaces was studied by a combined experimental approach of real-time in situ spectroscopic ellipsometry (RISE) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). One alloy surface pre-treatment prior to oxidation consisted of the removal of the native oxide and other contaminants on the alloy surface by sputter-cleaning under UHV conditions. A second surface pre-treatment involved exposing such sputter-cleaned surfaces to a short in vacuo annealing step at 460 K. Next, ultra-thin (<3 nm) oxide films were grown on these two pre-treated alloy surfaces by exposure to O2(g) within the temperature range of T = 300–485 K (at pO2 = 1 × 10?4 Pa). It was found that, as long as the chemical segregation of Mg from the alloy’s interior to the alloy/oxide interface is kinetically hindered, the oxide-film growth kinetics, the developing oxide-film constitution, as well as the local chemical states of the Al and Mg cations in the oxide layer depend strongly on the alloy surface pre-treatment. At T ? 450 K, the thermally-activated interfacial segregation of Mg becomes pronounced and, only then, the developing oxide-film constitution is approximately independent of the surface pre-treatment.  相似文献   

7.
Co-doping B-site of perovskite oxide LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCFO) with Cr6+ and Mg2+ ions has been attempted in this research for revamping chemical stability and oxygen ionic conductivity of this mixed conducting oxide. It is known that partial substitution for B-site cations of LSCFO by Cr gives rise to a significant improvement on chemical and thermal stability of the perovskite oxide. On the basis of this doped structure, introduction of an immaterial dose of Mg2+ ion into its B-site results in a microstructure consisting of smaller grains with higher density than its precursor. Furthermore, the resulting perovskite oxide La0.19Sr0.8Fe0.69Co0.1Cr0.2 Mg0.01O3 ? δ (LSFCCMO) displays higher O2? conductivity than the solely Cr-doped LSCFO besides the improved chemical stability against reduction in 5% CH4/He stream at 850 °C. A detailed examination of the oxidation states of B-site transition metal ions by XPS has also been conducted as a part of structural characterizations of LSFCCMO. The assessment of relative O2? conductivity shows that the grain boundary area plays a more important role than the bulk phase in facilitating ion transport, but with comparable boundary areas the higher densification level is favorable.  相似文献   

8.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

9.
Continuous-time photoelectron spectroscopy (PES) and photon-exposure-dependent photon-stimulated desorption (PSD) were employed to investigate the monochromatic soft X-ray-induced dissociation of SF6 molecules adsorbed on Si(111)-7 × 7 at 30 K (SF6 dose = 3.4 × 1013 molecules/cm2, ~ 0.5 monolayer). The photon-induced evolution of adsorbed SF6 was monitored at photon energies of 98 and 120 eV [near the Si(2p) edge], and sequential valence-level PES spectra made it possible to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~ 2.7 × 10? 17 and ~ 3.7 × 10?17 cm2, respectively. The changes in the F? and F+ PSD ion yields were also measured during irradiation of 120 eV photons. The photon-exposure dependencies of the F? and F+ ion yields show the characteristics: (a) the dissociation of adsorbed SF6 molecules is ascribable to the substrate-mediated dissociations [dissociative attachment (DA) and dipolar dissociation (DD) induced by the photoelectrons emitting from the silicon substrate]; (b) at early stages of photolysis, the F? yield is mainly due to DA and DD of the adsorbed SF6 molecules, while at high photon exposure the F? formation by electron capture of the F+ ion is likely to be the dominant mechanism; (c) the F+ ion desorption is associated with the bond breaking of the surface SiF species; (d) the surface SiF is formed by reaction of the surface Si atom with the fluorine atom or F? ion produced by scission of S–F bond of SFn (n = 1–6) species.  相似文献   

10.
A technique for the quantification of surface and grain boundary segregation using Wavelength Dispersive X-ray Spectroscopy (WDS) in the Scanning Electron Microscope (SEM) is proposed. As an example, the case of sulphur segregation in nickel is considered. The sulphur segregation can be quantified using a single voltage measurement (20 kV) of the sulphur Kα line intensity. The quantification is made from a simple proportionality equation derived from the XPP microanalysis model of correction. The result of segregation quantification by WDS is a surface concentration expressed in g.cm-2.Special attention was paid to the quantification of grain boundary segregation on fracture surfaces, taking into account the off-normal incidence of the electron beam on the analyzed surface. A simple technique that allows determination of the tilt angle from the specimen absorbed current is proposed. The influence of the azimuth angle of the analyzed surface with respect to WDS spectrometer is also discussed.The results of the WDS technique are shown to be repeatable within 5% with reasonable counting times (a few minutes per facet). As an example, the kinetics of sulphur grain boundary segregation in nickel at 750 °C was measured using WDS to document the quantitative capabilities of the technique.As already pointed out in a previous paper, it is confirmed that WDS is insensitive to surface contamination, which allows the analysis of ex-situ fractured samples.  相似文献   

11.
Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50 °C (7.9 × 10?3 M s?1), sonic power intensity of 2.6 × 103 W m?2 and dissipated energy of 130.4 J ml?1. Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra? were lower at 2.4 × 10?4, 1.3 × 10?4 and 3.5 × 10?4 M s?1, respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15 × 10?3 s?1 M?1 for Novozym 435–1.48 × 10?3 s?1 M?1 for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9 × 103 to 4.5 × 103 W m?2 resulted in an increased in acoustic pressure (Pa) from 3.7 × 108 to 5.7 × 108 N m?2 almost 2.4–3.7 times greater than the acoustic pressure (1.5 × 108 N m?2) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6 × 103–1.5 × 104 m s?2 was calculated i.e. approximately 984–1500 times greater than under the action of gravity.  相似文献   

12.
S. Cohen  N. Shamir  M.H. Mintz  I. Jacob  S. Zalkind 《Surface science》2011,605(15-16):1589-1594
Auger-Electron-Spectroscopy (AES) and Direct-Recoils-Spectrometry (DRS) were applied to study the interaction of O2 with a polycrystalline gadolinium surface, in the temperature range 300–670 K and oxygen pressure up to 2 × 10? 6 Torr. It has been found that initial uptake of oxygen, at coverage measurable by the techniques used here, results in rapid oxide island formation. The subsurface is believed to be a mixture of oxide particles and oxygen dissolved in the Gd metal, the latter being the mobile species, even at relatively low temperatures.Enhanced inward diffusion of oxygen starts as early as 420 K and dictates the surface oxygen concentration and effective thickness of the forming oxide. The oxygen accumulation rate at the near-surface region, as measured by the O(KLL) AES signal intensity, goes through a maximum as a function of temperature at 420 K. This is a result of the combination of still efficient oxygen chemisorption that increases surface occupation and slow inward diffusion. The thickest oxide, ~ 1.7 nm, is formed at 300 K and its effective thickness was found to decrease with increasing temperature (due to oxygen dissolution into the metal bulk).Diffusion coefficients of the oxygen dissolution into the bulk were evaluated for various temperatures utilizing models for infinitely thin oxide layer and thick oxide layer, respectively. The best fit under our experimental procedure was obtained by the thick layer model, and the coefficients that were calculated are D0 = 2.2 × 10? 16m2s? 1 and Ea = 46kJ/mol.  相似文献   

13.
Aberration-corrected high-resolution transmission electron microscopy allows for the delocalization-free observation of atomic motions on metallic surfaces and thus enables measurements of the diffusion of single atoms on the surfaces of nanoscopic objects such as nanoparticles. Using this recently introduced method, the diffusion coefficient for surface self-diffusion of Pt nanoparticles is determined through the fluctuating occupation of the particle's atomic columns. This diffusion coefficient is determined to lie in the range D  (10−17  10−16) cm2/s.  相似文献   

14.
Sr(Zr0.84Y0.16)0.91O3 ? δ (SZY) and Ba(Zr0.84Y0.16)0.96O3 ? δ (BZY) protonic conductor coatings were co-sputter deposited from metallic targets in argon–oxygen reactive gas mixtures. The chemical and structural features were investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and their morphology was assessed by scanning electron microscopy of the surface and of brittle fracture cross sections. The electrical properties of the coating were determined by complex impedance spectroscopy as a function of temperature in air. Relationships are established between the electrical properties and the morphology of the coatings. The SZY as deposited coatings is amorphous and crystallises under the convenient perovskite structure after annealing treatment at 873 K under air. The BZY as deposited coatings is crystallised at 523 K in situ under perovskite structure and a further annealing treatment increases the grain size. Conductivities and activation energies of crystallised coatings were 3.1 · 10? 5 S cm? 1/2 · 10? 5 S cm? 1 and 0.65 eV/0.71 eV after stabilization at 773 K for strontium and barium zirconate, respectively.  相似文献   

15.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

16.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2503-2507
The temperature and the oxygen partial pressure dependences of the electron and hole conductivities were measured by the dc polarization method using a Hebb–Wagner's ion blocking cell for Gd0.2Ce0.8O1.9 polycrystalline bodies with grain size of 0.5 μm prepared by sintering of nano-sized powder. A significant enrichment of gadolinium was observed in the vicinity of the grain boundary by TEM/EDS analyses. The electron conductivity were comparable with those of conventional Gd0.2Ce0.8O1.9 polycrystalline body with grain size of 2 μm, and it followed p(O2) 1/4 dependence at temperatures T = 973–1273 K. However, the observed hole conductivity was higher than that of conventional Gd0.2Ce0.8O1.9, and it did not follow p(O2)1/4 dependence. This anomalous p(O2) dependence disappeared after the sample was treated at T = 1773 K for 38 h and grain size was enlarged to 2–10 μm.  相似文献   

18.
Cobalt doping between 2 and 10 at.% was utilized to lower the required sintering temperature of materials in the series BaCe0.5Zr0.4(Y,Yb)0.1 ? yCoyO3 ? δ to between 1373 and 1698 K. The required sintering temperature decreased with increasing Co content; however, significant electronic conductivity was observed in both oxidizing and reducing environments for materials with 10 at.% Co. This was accompanied by a loss of chemical stability in H2O/H2 and CO2 environments. BaCe0.5Zr0.4Yb0.07Co0.03O3 ? δ was stable in these environments and provided the highest proton conductivity of the materials tested, 1.98 × 10? 3 S/cm at 923 K in humidified H2. Measurements in a hydrogen concentration cell indicated that the total ionic transference number for this material was between 0.86 and 1.00 with proton transference number between 0.84 and 0.75 at 773 and 973 K respectively. Under oxidizing conditions, the ionic transference number decreased to below 0.10. The grain boundary resistance dominated the total conductivity at low temperatures but was found to decrease with increased sintering temperature due to grain growth.  相似文献   

19.
The series of Gd4 ? xMxAl2O9 ? x/2 (M = Ca, Sr) with x = 0, 0.01, 0.05, 0.10 and 0.25 was prepared by the citrate complexation method. Both Gd4 ? xCaxAl2O9 ? x/2 and Gd4 ? xSrxAl2O9 ? x/2 show the monoclinic cuspidine structure with space group of P21/c up to 0.05–0.1 and 0.01–0.05 mol for Ca and Sr, respectively. Beyond the substitution limit of Gd4Al2O9, GdAlO3 and SrGd2Al2O7 appear as additional phases. The highest electrical conductivity obtained at 900 °C yielded σ = 1.49 × 10? 4 S/cm for Gd3.95Ca0.05Al2O8.98. In comparison, the conductivity of pure Gd4Al2O9 was σ = 1.73 × 10? 5 S/cm. The conductivities determined are in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd4Al2O9 at 1000 °C was 7.4 × 10? 6 K? 1. The phase transition between 1100 and 1200 °C reported earlier changes with increasing substitution of Ca and Sr.  相似文献   

20.
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0–10.0), BCG concentration (4–20 mg L−1), EY concentration (3–23 mg L−1), adsorbent dosage (0.01–0.03 g), sonication time (1–5 min) and centrifuge time (2–6 min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9 mg L−1, 10 mg L−1, 0.02 g, 4 and 4 min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73 mg g−1 of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号