首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《Solid State Ionics》2006,177(35-36):3187-3191
The electrochemical properties of geometrically well-defined Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) microelectrodes have been investigated by impedance spectroscopy. The microelectrodes of 20–100 μm diameter and 100 nm thickness were prepared by pulsed laser deposition (PLD), photolithography and argon ion beam etching. The oxygen reduction reaction at these model electrodes is limited by interfacial processes, i.e. by the oxygen surface exchange and/or by the transfer of oxide ions across the electrode/electrolyte boundary, whereas the resistance associated with the transport of oxide ions through the bulk of the thin film electrode is negligible. The experiments revealed an extremely low absolute value of the electrochemical surface exchange resistance of only 0.09 (± 0.03) Ω cm2 at 750 °C in air, which is more than a factor of 50 lower than the corresponding value measured for La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) microelectrodes of the same geometry. The dependence of this and other electrochemical quantities such as the chemical bulk capacitance or the BSCF/YSZ interfacial resistance on temperature has been studied between 500 and 750 °C.  相似文献   

2.
SrTi1?xFexO3?δ (STF) model cathodes, with compositions of x = 0.05 to 0.80 were deposited onto single crystal yttria stabilized zirconia by pulsed layer deposition as dense films with well defined area and thickness and studied by electrochemical impedance spectroscopy as a function of electrode geometry, temperature and pO2. The STF cathode was observed to exhibit typical mixed ionic-electronic behavior with the electrode reaction occurring over the full electrode surface area rather than being limited to the triple phase boundary. The electrode impedance was observed to be independent of electrode thickness and to the introduction of CGO interlayers and inversely proportional to the square of the electrode diameter, pointing to surface exchange limited kinetics. Values for the surface exchange coefficient, k, were calculated and found to be comparable in magnitude to those exhibited by other popular mixed ionic-electronic conductors such as (La,Sr)(Co,Fe)O3, thereby, confirming the suitability of STF as a model mixed conducting cathode material. The surface exchange coefficient, k, was also found to be insensitive to orders of magnitude change in both bulk electronic and ionic conductivities.  相似文献   

3.
The electrochemical performance of porous La0.6Sr0.4Co0.2Fe0.8O3  δ (LSCF) cathodes is improved by inserting a dense LSCF layer. A 200 nm thin layer is deposited on the electrolyte substrate by pulsed laser deposition, prior to the screen printing process. This procedure enhances the adherence of the porous cathode layer to the electrolyte and allows a lower sintering temperature, which reduces grain growth during sintering. In air a decrease in polarization resistance with a factor of 3 is observed for electrodes sintered at 1100 °C. The apparent electrolyte resistance is also reduced with the dense PLD layer. A remarkable change in Po2 dependence is observed for the Gerischer parameters that describe part of the electrode impedance, indicating a possible change in the oxygen transfer mechanism.  相似文献   

4.
《Solid State Ionics》2006,177(33-34):2931-2938
Surface exchange resistance can reduce the oxygen transport through dense mixed ionic-electronic conducting (MIEC) membranes. Addition of an MIEC surface layer to a base substrate can reduce the surface exchange resistance. Existing oxygen transport relations that consider bulk diffusion and surface exchange resistance are extended to treat coated membranes formed by depositing a highly conductive, thin layer of MIEC on the surface of a dissimilar MIEC substrate and accounting for the solid/solid interfacial resistance. The oxygen flux through the coated membrane may exceed that through the bare membrane only if: 1) the surface exchange coefficient of the added layer is larger than the surface exchange coefficient of the bare membrane; and 2) the solid/solid interfacial resistance is sufficiently small. In general, deposition of the surface layer on the membrane tube surface exposed to lean gas leads to a larger oxygen flux than deposition of the layer on the oxygen rich side. A La0.5Sr0.5Fe0.8Ga0.2O3-δ/SrCo0.8Fe0.2O3-δ membrane achieved an oxygen outwards flux of 0.45 mL/mincm2 at 1000 °C from an air/helium gradient. This was a ∼ 50% increase over that obtained using an uncoated LSFG tube.  相似文献   

5.
《Solid State Ionics》2009,180(40):1672-1682
The double perovskite Sr2MgMoO6  δ (SMM) has been proposed as a potential anode material for direct hydrocarbon oxidation in solid oxide fuel cells (SOFCs). The oxygen nonstoichiometry and electrical conductivity dependence of Sr2MgMoO6  δ have been determined as a function of the oxygen partial pressure by coulometric titration and impedance spectroscopy techniques. The chemical compatibility of Sr2MgMoO6  δ with most of the typical electrolytes commonly used in SOFCs i.e. La0.8Sr0.2Ga0.8Mg0.2O3  δ (LSGM), Ce0.8Gd0.2O2  δ (CGO) and Zr0.84Y0.16O2  δ (YSZ), was investigated. Reactivity between SMM and all these electrolytes has been found above 1000 °C, although the reaction is most severe with ZrO2-based electrolytes. Area-specific polarisation resistance of the SMM/LSGM/SMM symmetrical cells indicates that the polarisation resistance increases with the firing temperature of the electrodes due to chemical interaction between LSGM and SMM layers. A CGO buffer layer between the anode and electrolyte was also used to prevent an excessive interdiffusion of ionic species between these components, resulting in better performance. Power densities of 330 and 270 mW cm 2 were reached at 800 °C for SMM/CGO/LSGM/LSCF and SMM/LSGM/LSCF electrolyte-supported cells, respectively; with 600-μm-thick LSGM electrolyte, using humidified H2 as fuel and air as oxidant. XPS and XRPD studies on SMM powders annealed in air and diluted CH4 atmospheres showed that the surface of SMM powders is mainly formed by SrMoO4 and metal carbonates.  相似文献   

6.
The steady-state oxygen permeation through dense La2NiO4 + δ ceramics, limited by both surface exchange and bulk ambipolar conduction, can be increased by deposition of porous layers onto the membrane surfaces. This makes it possible, in particular, to analyze the interfacial exchange kinetics by numerical modelling using experimental data on the oxygen fluxes and equilibrium relationships between the oxygen chemical potential, nonstoichiometry and total conductivity. The simulations showed that the role of exchange limitations increases on reducing oxygen pressure, and becomes critical at relatively large chemical potential gradients important for practical applications. The calculated oxygen diffusion coefficients in La2NiO4 + δ are in a good agreement with literature. In order to enhance membrane performance, the multilayer ceramics with different architecture combining dense and porous components were prepared via tape-casting and tested. The maximum oxygen fluxes were observed in the case when one dense layer, ~ 60 μm in thickness, is sandwiched between relatively thin (< 150 μm) porous layers. Whilst the permeability of such membranes is still affected by surface-exchange kinetics, increasing thickness of the porous supporting components leads to gas diffusion limitations.  相似文献   

7.
《Solid State Ionics》2006,177(9-10):907-913
The electrode reaction of the perovskite phases Sr1−xLaxCo0.8Fe0.2O3−δ (x = 0.1 and 0.6) on Ce0.9Gd0.1O1.95 has been investigated by impedance spectroscopy in the temperature range 600  T  800 °C. Thick porous electrodes (t 20 μm) were sprayed on Ce0.9Gd0.1O1.95 and ac impedance spectra were recorded on symmetrical cells at the equilibrium. The analysis of the complex impedance diagrams clearly indicates the presence of two contributions. The low frequency one was assigned to the gas phase oxygen diffusion through the porous electrode and a finite length diffusion (Warburg) impedance was used to describe the high frequency (HF) data. The polarization resistance of the HF impedance contribution (Rw) is higher for x = 0.1 while the activation energy of Rw is higher for x = 0.6. The variations of Rw versus the La content, temperature and thickness indicate that the Warburg-type impedance contains information of both bulk oxygen diffusion and surface processes.  相似文献   

8.
LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCF) represents one of the state-of-the-art cathode materials for solid oxide fuel cells (SOFCs) due primarily to its high ionic and electronic conductivity. In this study, a one-step infiltration process has been developed to deposit, on the surface of a porous LSCF cathode, a thin film (50–100 nm) of Sm0.5Sr0.5CoO3 ? δ (SSC), which is catalytically more active for oxygen reduction. Electrochemical impedance spectroscopy reveals that the SSC coating has dramatically reduced the polarization resistance of the cathode, achieving area-specific resistances of 0.036 Ω cm2 and 0.688 Ω cm2 at 750 °C and 550 °C, respectively. It has also maintained the stability of LSCF cathodes. In particular, the peak power densities are increased by ~ 22% upon the infiltration of SSC onto the porous LSCF cathodes of our best performing cells. These results demonstrate that a conductive backbone (e.g., LSCF) coated with a catalytic film (e.g., SSC) is an attractive approach to achieving an active and stable SOFC cathode for low-temperature solid oxide fuel cells.  相似文献   

9.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

10.
We present experimental results obtained forRBa2Cu3O7  x(R = Y,Er) expitaxial thin films obtained through pulsed laser deposition (PLD) and grown on yttria stabilized zirconia (YSZ) and SrTiO3(STO) substrates. The films have been deposited by using low deposition rates (f = 4 Hz) and with control of the film surface temperature rather than that of the sample holder leading to a high quality of the epitaxy.  相似文献   

11.
Biaxially textured Ce2Y2O7 (CYO) films were deposited on Ni–5at.%W (Ni–5W) tapes by a DC reactive sputtering technique in a reel-to-reel system. Subsequent YBa2Cu3O7?δ (YBCO) films were prepared using pulsed laser deposition leading to a simplified coated conductor architecture of YBCO/CYO/Ni–5W. X-ray diffraction measurements revealed an epitaxial growth of the CYO buffer layer with a texture spread down to 2.2° and 4.7° for the out-of-plane and in-plane alignment, respectively. Microstructural investigations showed a dense, smooth and crack-free surface morphology for CYO film up to a thickness of 350 nm, implying an effective suppression of cracks due to the incorporation of Y in CeO2. The superconducting transition temperature Tc of about 90 K with a narrow transition of 0.8 K and the inductively measured critical current density Jc of about 0.7 MA/cm2 indicate the potential of the single CYO buffer layer.  相似文献   

12.
In the present work, La2Zr2O7 (LZO) buffer layers were deposited using pulsed laser deposition (PLD) on various metallic substrates including epitaxial pure Ni on a LaAlO3 (LAO) substrate as well as highly textured Ni–5 at.%W tapes. It is shown that the LZO deposited on pure Ni-buffered LAO exhibits a mixed orientation while LZO on Ni–5 at.%W grows epitaxially. This difference may be explained by the existence of a sulphur superstructure on the surface of Ni–5 at.%W tapes, promoting the epitaxial (0 0 l) nucleation of seed layers. Highly textured YBa2Cu3O7?δ layers were prepared either by using a single buffer layer of LZO or bilayer buffers of CeO2/LZO on Ni–5 at.%W. The superconducting transition temperature (Tc) increases with the LZO thickness, reaching a value of 90 K with a very narrow transition width (1.5 K) for 240 nm thick LZO layers. Inductive Jc measurements at 77 K in self-field show a value of about 0.96 MA/cm2 for the thickest LZO layers, which is comparable to the value observed on standard buffer architectures such as CeO2/YSZ/Y2O3.  相似文献   

13.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

14.
Films of nominal composition Ge28Se60Sb12 were deposited on microscope slides by pulsed laser deposition (PLD), using either bulk or powdered glassy targets and a Nd:YAG laser (λ=266 nm). The films with thickness comprised between 400 and 800 nm showed a smooth and dense morphology. They were homogeneous in composition all over the samples with a composition somewhat deficient in selenium compared to the nominal one: Ge28.1±0.3Se56.1±0.1Sb15.8±0.2 and Ge29.0±0.3Se55.5±0.1Sb15.5±0.2 for films obtained from powdered glassy targets and bulk targets, respectively. The optical characteristics of the films were extracted from the transmission spectra recorded between 250 and 2500 nm. In particular, the refractive index at 1.5 μm was found to be 2.75±0.03, close to that of the bulk glass, as expected for dense films. The decrease in the optical band gap and the increase in the Urbach absorption edge with the film thickness were attributed to an increase in disorder.  相似文献   

15.
Pure (0 0 l)-textured CeO2 buffer layers were deposited on single crystal r-plane Al2O3 (1–102) substrate by a hybrid process which was combined with magnetron sputtering for the seed layer and metal–organic deposition for the subsequent layer. Strongly c-axis oriented YBCO films were deposited on the CeO2 buffered r-cut Al2O3 (1–102) substrates. Atomic force microscope and scanning electronic microscopy results show that the prepared buffers and YBCO films are relatively dense and smooth. The critical current of the YBCO films exceeds 1.5 MA/cm2 at 77 K with the superconducting transition temperature of 90 K. The surface resistivity is as below as 14 μΩ at 1 GHz frequency. The results demonstrate that the hybrid route is a very promising method to prepare YBCO films for microwave application, which can combine the sputtering advantage for preparing of highly c-axis oriented CeO2 buffer layers and the advantages of metal–organic deposition with rapid processing, low cost and easy preparation of large-area YBCO films.  相似文献   

16.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

17.
GaAs(100) was exposed to pulses of trimethylaluminum (TMA, Al(CH3)3) and titanium tetrachloride (TiCl4) to mimic the first half-cycle of atomic layer deposition (ALD). Both precursors removed the 9.0 ± 1.6 Å-thick mixed oxide consisting primarily of As2O3 with a small Ga2O component that was left on the surface after aqueous HF treatment and vacuum annealing. In its place, TMA deposited an Al2O3 layer, but TiCl4 exposure left Cl atoms adsorbed to an elemental As layer. This suggests that oxygen was removed by the formation of a volatile oxychloride species. A small TiO2 coverage of approximately 0.04 monolayer remained on the surface for deposition temperatures of 89 °C to 135 °C, but no TiO2 was present from 170 °C to 230 °C. The adsorbed Cl layer chemically passivated the surface at these temperatures and blocked TiO2 deposition even after 50 full ALD cycles of TiCl4 and water vapor. The Cl and As layers desorbed simultaneously at higher temperature producing peaks in the temperature programmed desorption spectrum in the range 237–297 °C. This allowed TiO2 deposition at 300 °C in single TiCl4 pulse experiments. On the native oxide-covered surface where there was a higher proportional Ga oxide composition, TiCl4 exposure deposited TiO2.  相似文献   

18.
A large difference in thermal expansion coefficient of electrode and electrolyte leads to imperfect electrode/electrolyte interface and hence significant polarization losses in solid oxide fuel cells. To overcome the difficulties associated with electrode and electrode/electrolyte interface, there is need to fabricate the composite cathode. Thus the present paper deals with study of La0.6Sr0.4Co0.2Fe0.8O3−δ(LSCF)–Ce0.9Gd0.1O1.95(GDC) nanocomposite with different fractions of GDC obtained by physical mixing of combustion synthesized nanopowders. No secondary phases were observed upon sintering at 1100 °C for 2 h affirming the chemical compatibility between LSCF and GDC. The composites with relatively high GDC% have higher density as a consequence of rapid grain growth and less conductivity. The nanocomposite with 50% of GDC showed electric conductivity of 30 Scm−1 at 500 °C and low area specific resistance of 106 Ω cm2 with 10 μs relaxation time at 200 °C.  相似文献   

19.
《Solid State Ionics》2006,177(17-18):1461-1467
The oxygen transport kinetics of mixed ionic and electronic conducting La2NiO4 thin films made by pulsed laser deposition (PLD) were measured using the electrical conductivity relaxation (ECR) technique. Since the film thickness is ∼ 3000 Å, the oxygen transport kinetics are controlled by the surface exchange rate. The experimental data are not well described by the usual single time constant model for oxygen surface exchange, but a good fit is obtained using two independent time constants. This model implies that the La2NiO4 film consists of two independent regions with different exchange rates that correspond to two different film microstructures.  相似文献   

20.
Ta/NiO/NiFe/Ta multilayers, utilizing Ta as the buffer layer, were prepared by RF reactive and DC magnetron sputtering. The exchange coupling field between NiO and NiFe reached a maximum value of 120 Oe at a NiO film thickness of 50 nm. The composition and chemical state at the interface region of Ta/NiO/Ta were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an `intermixing layer’ at the Ta/NiO (and NiO/Ta) interface due to a thermodynamically favorable reaction: 2Ta+5NiO=5Ni+Ta2O5. This interface reaction has an effect on the exchange coupling. The thickness of the `intermixing layer’ as estimated by XPS depth-profiles was about 8–10 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号