首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
将超临界法制备的钛副族纳米金属氧化物(TiO2、ZrO2、HfO2)分别与ZSM-5分子筛和石英砂混合得到双功能催化剂(Ti/HZ、Zr/HZ、Hf/HZ)和金属氧化物催化剂(Ti/Si、Zr/Si、Hf/Si)。研究了金属氧化物的晶体结构、表面氧空位和合成气吸附性能对金属氧化物催化剂和双功能催化剂催化CO加氢性能的影响。结果表明,双功能催化剂可以直接催化合成气制芳烃。金属氧化物表面氧空位浓度、氧空位电子性质和金属氧化物的H/C比(CO和H2吸附量之比)共同决定着金属氧化物表面中间体产物的种类。ZrO2表面的碳氢氧(CHxO*)中间体产物有利于Zr/HZ获得芳烃高选择性(71.15%),而TiO2和HfO2中的CH3*则导致Ti/HZ和Hf/HZ的催化产物CH4选择性较高。  相似文献   

2.
电化学还原二氧化碳为乙烯不仅能缓解温室效应而且能得到高附加值的石油化工产品乙烯。本文综述了近年来电催化还原二氧化碳产乙烯的研究进展,着重介绍了能将二氧化碳还原为乙烯的电催化剂,其中铜基催化剂是高选择性产生乙烯的有效电极材料,对铜催化剂进行掺杂、改性和修饰能够在保持催化剂高选择性产生乙烯的同时提高催化剂的稳定性和活性。本文还涉及了电催化条件下乙烯形成的机理以及反应条件对乙烯选择性的影响,简要介绍了二氧化碳在催化剂表面的三种吸附态和Cu(100)晶面形成乙烯的机理,以及不同电位、温度、压力、电解液组成和pH值对乙烯选择性的影响。最后,总结并展望了二氧化碳电催化还原产乙烯催化剂开发亟待解决的问题和未来的发展方向,期望为新型催化剂的构筑提供有益参考。  相似文献   

3.
以清洁可再生电能为驱动力,常温常压下将二氧化碳(CO2)选择性还原转化生成高附加值化学品或燃料,是解决目前能源和环境问题、实现CO2资源化利用、促进碳循环回归平衡的有效手段之一。由于生成不同产物的还原电位和反应历程不同,单位产物的生产成本各有差异。最近研究表明,HCOOH是所有电化学CO2还原产物中最具有经济效益和实用价值的产物之一。本文从电催化还原CO2制HCOOH生成机理出发,综述了p区金属(如Sn、Bi、In)基催化剂在电催化还原CO2制HCOOH领域取得的重要研究进展,其中以典型催化剂为例分析了CO2还原生成HCOOH活性提高策略如氧化物还原转化、形貌调控、掺杂和合金化等,重点探讨了活性位点种类、数量以及催化剂电子结构在关键中间体*CO2.-、*OCHO的形成和吸附中的作用,最后总结了目前该领域面临的挑战以及未来发展方向。  相似文献   

4.
电催化还原二氧化碳成多碳燃料一直是研究的热点. 而找到活性高,选择性优,稳定性好的催化剂一直是研究者们奋斗的目标. 二氧化锰因其独特的物理和化学性质被广泛的应用于电催化领域,而缺陷的调控可以改变催化剂的电子性质,在此次工作中作者系统地研究了在有氧缺陷和没有氧缺陷的二维二氧化锰上的电催化二氧化碳还原反应. 通过利用自旋极化密度泛函理论,作者分别计算了他们的电子性质和分子在吸附过程中的能量值. 结果显示,缺陷的引入改变了二氧化锰的特性,使其从半导体性质变为半金属性质,从而提高催化剂的导电性. 同时,分析能量图也很容易发现对应产品的选择性也发生了变化. 二氧化锰有利于甲酸的产生,而氧缺陷的二氧化锰更有利于一氧化碳的生成. 本研究将为二氧化碳还原的其他非贵金属氧化物催化剂的结构设计和优化提供一定的指导.  相似文献   

5.
郝金辉  施伟东 《催化学报》2018,39(7):1157-1166
近年来,全球二氧化碳排放量逐年增加, 对人们赖以生存的生态环境已造成严重威胁, 因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注. 与目前已开发的转化技术(如热催化和光催化等)相比, 电催化二氧化碳转化技术具有稳定的效率?可控的选择性?简单的反应单元和巨大的工业应用潜力, 是一种更为理想的转化技术之一. 从反应动力学来看, 目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度. 另一方面, 电催化二氧化碳转化包含多个质子和电子的耦合过程, 反应过程包含多种路径, 反应产物往往是混合物. 在此背景下, 如何发展高催化效率和高选择性电催化剂成为目前研究的焦点. 在众多的电催化剂中, 贵金属及其合金展现出较高的电催化二氧化碳还原活性, 但储量小的缺点限制了其大规模的工业应用. 铜基材料可以把二氧化碳转化为附加值更高的产品. 然而, 铜基材料仍难以克服选择性差?失活严重和效率低等缺点. 作为一种更廉价的材料, 碳基催化剂具有价廉?比表面积大?导电性好?化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究. 然而, 单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低, 导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低. 因此, 开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力. 过渡金属价电子在d轨道, 而d轨道邻近费米能级, d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化, 进而展现出多种催化活性. 电催化二氧化碳还原是一个多电子和质子耦合过程, 催化剂的本征活性由其表面电子结构决定. 在此背景下, 过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂. 对于电催化二氧化碳还原, 不同中间体的标度关系是制约反应总效率的关键因素. N?rskov等研究发现, MoS2, MoSe2和Ni掺杂 MoS2催化剂上存在不同种类的活性位点. 不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立, 从而有效打断中间体的标度关系. 2014,Salehi-Khojin等成功把MoS2应用在高效电催化二氧化碳还原中. 边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性. 其它研究工作者通过引入掺杂物质, 进一步提高了MoS2的电催化二氧化碳还原性能. Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性, 然而目前铁基催化剂的研究相对较少. Co基材料也可用于电催化二氧化碳转化.2016年, Xie等首次制备无机Co基材料用于电催化二氧化碳还原. 部分氧化的钴可以促进速控步骤反应进程, 进而降低整体反应的过电势. 基于此, 制备了超薄的Co3O4片层, 发现价电子轨道中心更靠近费米能级时, 电极材料展现出更高的催化活性. 进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障. 此外, Ni基材料也被证明具有高的催化二氧化碳转化活性. 目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向, 并且联系实验证明了方法的可行性. 受到这些工作的启发, 未来可将有巨大潜力的过渡金属基化合物化合物, 例如过渡金属氮化物?过渡金属磷化物?过渡金属碳化物和过渡金属硼化物等, 作为电催化剂研究其二氧化碳还原催化性能. 另外, 就目前的研究来看, 将二氧化碳有效地还原到特定的产物仍存在巨大的挑战. 如何优化过渡金属(Mo, Fe, Co和Ni)基催化剂价层d轨道结构, 促进反应中间体吸附过程, 将是解决催化活性和选择性这一科学问题的关键.  相似文献   

6.
近年来,全球二氧化碳排放量逐年增加,对人们赖以生存的生态环境已造成严重威胁,因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注.与目前已开发的转化技术(如热催化和光催化等)相比,电催化二氧化碳转化技术具有稳定的效率、可控的选择性、简单的反应单元和巨大的工业应用潜力,是一种更为理想的转化技术之一.从反应动力学来看,目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度.另一方面,电催化二氧化碳转化包含多个质子和电子的耦合过程,反应过程包含多种路径,反应产物往往是混合物.在此背景下,如何发展高催化效率和高选择性电催化剂成为目前研究的焦点.在众多的电催化剂中,贵金属及其合金展现出较高的电催化二氧化碳还原活性,但储量小的缺点限制了其大规模的工业应用.铜基材料可以把二氧化碳转化为附加值更高的产品.然而,铜基材料仍难以克服选择性差、失活严重和效率低等缺点.作为一种更廉价的材料,碳基催化剂具有价廉、比表面积大、导电性好、化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究.然而,单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低,导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低.因此,开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力.过渡金属价电子在d轨道,而d轨道邻近费米能级,d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化,进而展现出多种催化活性.电催化二氧化碳还原是一个多电子和质子耦合过程,催化剂的本征活性由其表面电子结构决定.在此背景下,过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂.对于电催化二氧化碳还原,不同中间体的标度关系是制约反应总效率的关键因素.N?rskov等研究发现,MoS_2,MoSe_2和Ni掺杂MoS_2催化剂上存在不同种类的活性位点.不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立,从而有效打断中间体的标度关系.2014年,Salehi-Khojin等成功把MoS_2应用在高效电催化二氧化碳还原中.边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性.其它研究工作者通过引入掺杂物质,进一步提高了MoS_2的电催化二氧化碳还原性能.Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性,然而目前铁基催化剂的研究相对较少.Co基材料也可用于电催化二氧化碳转化.2016年,Xie等首次制备无机Co基材料用于电催化二氧化碳还原.部分氧化的钴可以促进速控步骤反应进程,进而降低整体反应的过电势.基于此,制备了超薄的Co_3O_4片层,发现价电子轨道中心更靠近费米能级时,电极材料展现出更高的催化活性.进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障.此外,Ni基材料也被证明具有高的催化二氧化碳转化活性.目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向,并且联系实验证明了方法的可行性.受到这些工作的启发,未来可将有巨大潜力的过渡金属基化合物化合物,例如过渡金属氮化物、过渡金属磷化物、过渡金属碳化物和过渡金属硼化物等,作为电催化剂研究其二氧化碳还原催化性能.另外,就目前的研究来看,将二氧化碳有效地还原到特定的产物仍存在巨大的挑战.如何优化过渡金属(Mo,Fe,Co和Ni)基催化剂价层d轨道结构,促进反应中间体吸附过程,将是解决催化活性和选择性这一科学问题的关键.  相似文献   

7.
李能  彭嘉禾  史祖皓  张鹏  李鑫 《催化学报》2022,(7):1906-1917
单原子催化还原二氧化碳制备可再生燃料和化工原料是一种有前途二氧化碳资源化技术.受MXene纳米片及其表面官能团调节的启发,本文利用不同的官能团(T=-O和-S)构建了Ti2C基单原子电催化剂(TM@Ti2CTx,TM=V,Cr,Mn,Fe,Co,Ni),采用从头算量子化学方法,通过调控MXene表面官能团引起电子轨道重构和电荷转移,从而调控MXene基电催化剂的二氧化碳电催化性能.本文研究发现,氧官能团表面锚定的单原子催化剂(TM@Ti2CO2)能够显著活化CO2.当CO2分子吸附在TM@Ti2CO2表面上时,CO2分子的轨道发生了重构,CO2分子2π*u反键轨道劈裂,部分轨道与单原子的3d轨道结合沉入费米能级之下,导致CO2分子发生形变.当CO2分子吸附在TM...  相似文献   

8.
铜-锑双金属合金高效电催化还原二氧化碳制乙烯   总被引:1,自引:0,他引:1  
随着全球工业化进程的快速发展,日益增多的人类活动不仅加速化石燃料的消耗,还会导致温室气体二氧化碳(CO2)的大量排放.同时,CO2也是廉价、无毒无害、储量丰富的C1资源,将其转化为有价值的化学品具有碳资源合理利用和环境保护的双重意义.近年来,采用电化学方法温和条件下还原CO2为重要化学品和燃料引起广泛关注.其中,探索廉价电催化剂,高效催化还原CO2为C2产物仍是一个具有挑战性的课题.铜基催化剂由于自身低成本和可还原CO2为多种碳氢产物的优点而备受关注.然而,铜基电催化材料具有选择性差、失活严重和效率低等缺点,并且在电催化还原CO2过程中需要较高的过电位,反应过程中会受到氢气析出副反应的影响.为了得到一种化学性质稳定、高电流密度和高选择性等优点的材料在电催化CO2还原中得到了广泛的研究.然而,单纯的铜催化剂对CO2分子的活化以及反应中间体的吸附能力较低,导致了铜基材料催化剂电催化CO2还原活性及选择性较低.因此,开发出可实际应用的高效率和高选择性的电极材料是当前该技术研究中亟待解决的关键科学问题.近年来,铜基二元合金在电催化CO2还原反应中受到广泛关注.由于二元金属的电子结构和各元素的电子结合能发生变化,其催化活性明显优于单金属催化剂.因此,铜基双金属合金在提高CO2还原产物选择性方面具有广阔的前景.本文采用低温还原的方法制备了一系列不同组成的Cu-Sb双金属合金,系统研究了一系列不同配比的Cu-Sb双金属合金对电催化还原CO2为乙烯的影响.研究发现,当Cu/Sb比例为10/1(Cu10-Sb1)时,可有效提高乙烯的法拉第效率及电流密度.当以0.1 M KCl水溶液作为电解液,电位为-1.19 V vs.RHE时,乙烯的法拉第效率和电流密度分别为49.73%和28.5 mA cm-2.实验结果表明,Cu-Sb双金属合金催化剂优异的催化性能主要源于适宜的电子态、良好的CO2吸附性能、较大的电化学比表面积和较高的电子传输速率.迄今,用Cu-Sb作为催化剂进行电催化还原CO2制乙烯尚未见报道.  相似文献   

9.
氮掺杂碳通常被用作铂基催化剂电催化氧还原反应的功能载体,但是,掺杂的氮对分子氧在铂活性中心上的吸附和还原机理尚不清楚。本研究采用氨气热解的方法制取氮掺杂纳米碳作为载体,并采用调节氨气热解温度进而控制不同种类氮掺杂的含量,可以使铂催化剂获得较高的零价铂含量、较大的电化学活性面积、合适的铂粒径(2.10 nm)和电子快速传输能力从而提高电催化活性。研究发现,具有最佳氮含量掺杂的Pt/Nano-NC-800催化剂显示出优异的电催化氧还原性能(例如,半波电位为0.80 V vs RHE,极限扩散电流为5.37 mA/cm2),以及强的抗甲醇和一氧化碳中毒能力。该性能优于商业铂碳催化剂(20%,JM)以及大多数沉积在碳纳米颗粒或其他载体上的铂催化剂,表现出优异的应用潜力。  相似文献   

10.
随着工业发展和全球人口的持续增长,人类对化石燃料的消耗日益增加,从而导致大气中二氧化碳含量的显著增加以及与之相伴的一系列环境问题.电化学还原二氧化碳制备高附加值的燃料和化学品具有稳定的效率和较高的经济可行性等特点,目前已成为一种有前景的策略来缓解当前全球面临的能源短缺和气候变暖问题.然而,电催化二氧化碳还原过程存在反应能垒高和复杂的多电子/质子耦合过程等不足,因此,合理有效的电催化剂设计成为该领域的关键问题.近年,理解和明确电化学二氧化碳还原反应过程的活性起源、选择性调控机制和催化反应机理已成为高效电催化剂设计过程中的重要指导原则.作为一类独特的纳米尺度的金属氧簇,多金属氧酸盐(多酸)已成为二氧化碳还原领域的热点材料.尤其是,多酸明确的结构、优越的电子/质子存储转移能力和二氧化碳吸附活化能力有助于探究二氧化碳还原反应过程中的活性起源和构效机制.因此,利用多酸阐明电化学二氧化碳还原反应中的这些关键问题对于开发高效、可实用化的电催化剂意义重大.本文综述了近年多酸在电催化二氧化碳还原反应中取得的进展,重点介绍了多酸阴离子均相分子催化剂、多酸基无机-有机杂化材料催化剂、多酸电解质溶液、多酸-纳...  相似文献   

11.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   

12.
Through the combustion of fossil fuels and other human activities, large amounts of CO2 gas have been emitted into the atmosphere, causing many environmental problems, such as the greenhouse effect and global warming. Thus, developing and utilizing renewable clean energy is crucial to reduce CO2 emission and achieve carbon neutrality. The electrochemical CO2 reduction reaction (CO2RR) has been considered as an effective approach to obtain high value-added chemicals and fuels, which can store intermittent renewable energy and achieve the artificial carbon cycle. In addition, due to its multiple advantages, such as mild reaction conditions, tunable products, and simple implementation, electrochemical CO2RR has attracted extensive attention. Electrochemical CO2RR involves multiple electron–proton transfer steps to obtain multitudinous products, such as C1 products (CO, HCOOH, CH4, etc.) and C2 products (C2H4, C2H5OH, etc.). The intermediates, among which *CO is usually identified as the key intermediate, and reaction pathways of different products intersect, resulting in an extremely complex reaction mechanism. Currently, copper has been widely proven to be the only metal catalyst that can efficiently reduce CO2 to hydrocarbons and oxygenates due to its suitable adsorption energy for *CO. However, the low product selectivity, poor stability, and high overpotential of pure Cu hinder its use for the production of industrial-grade multi-carbon products. Tandem catalysts with multiple types of active sites can sequentially reduce CO2 molecules into desired products. When loaded onto a co-catalyst that can efficiently convert CO2 to *CO (such as Au and Ag), Cu acts as an electron donor owing to its high electrochemical potential. *CO species generated from the substrate can spillover onto the surface of electron-poor Cu due to the stronger adsorption and be further reduced to C2+ products. The use of Cu-based tandem catalysts for electrochemical CO2RR is a promising strategy for improving the performance of CO2RR and thus, has become a research hotspot in recent years. In this review, we first introduce the reaction routes and tandem mechanisms of electrochemical CO2RR. Then, we systematically summarize the recent research progress of Cu-based tandem catalysts for electrochemical CO2RR, including Cu-based metallic materials (alloys, heterojunction, and core-shell structures) as well as Cu-based framework materials, carbon materials, and polymer-modified materials. Importantly, the preparation methods of various Cu-based tandem catalysts and their structure–activity relationship in CO2RR are discussed and analyzed in detail. Finally, the challenges and opportunities of the rational design and controllable synthesis of advanced tandem catalysts for electrochemical CO2RR are proposed.  相似文献   

13.
Fossil fuels are expected to be the major source of energy for the next few decades. However, combustion of nonrenewable resources leads to the release of large quantities of CO2, the primary greenhouse gas. Notably, the concentration of CO2 in the atmosphere is increasing annually at an astounding rate. Electrochemical CO2 reduction (ECR) to value-added fuels and chemicals using electricity from intermittent renewable energy sources is a carbon-neutral method to alleviate anthropogenic CO2 emissions. Despite the steady progress in the selective generation of C1 products (CO and formic acid), the production of multi-carbon species still suffers from low selectivity and efficiency. As an ECR product, ethylene (C2H4) has a higher energy density than do C1 species and is an important industrial feedstock in high demand. However, the conversion of CO2 to C2H4 is plagued by low productivity and large overpotential, in addition to the severe competing hydrogen evolution reaction (HER) during the ECR. To address these issues, the design and development of advanced electrocatalysts are critical. Here, we demonstrate fine-tuning of ECR to C2H4 by taking advantage of the prominent interaction of Cu with shape-controlled CeO2 nanocrystals, that is, cubes, rods, and octahedra predominantly covered with (100), (110), and (111) surfaces, respectively. We found that the selectivity and activity of the ECR depended strongly on the exposed crystal facets of CeO2. The overall ECR Faradaic efficiency (FE) over Cu/CeO2(110) (FE ≈ 56.7%) surpassed that of both Cu/CeO2(100) (FE ≈ 51.5%) and Cu/CeO2(111) (FE ≈ 48.4%) in 0.1 mol·L-1 KHCO3 solutions with an H-type cell. This was in stark contrast to the exclusive occurrence of the HER over pure carbon paper, CeO2(100), CeO2(110), and CeO2(111). In particular, the FE toward C2H4 formation and the partial current density increased in the sequence Cu/CeO2(111) < Cu/CeO2(100) < Cu/CeO2(110) within applied bias potentials from -1.00 to -1.15 V (vs. the reversible hydrogen electrode), reaching 39.1% over Cu/CeO2(110) at a mild overpotential (1.13 V). The corresponding values for Cu/CeO2(100) and Cu/CeO2(111) were FEC2H4 ≈ 31.8% and FEC2H4 ≈ 29.6%, respectively. The C2H4 selectivity was comparable to that of many reported Cu-based electrocatalysts at similar overpotentials. Furthermore, the FE for C2H4 remained stable even after 6 h of continuous electrolysis. The superior ECR activity of Cu/CeO2(110) to yield C2H4 was attributed to the metastable (110) surface, which not only promoted the effective adsorption of CO2 but also remarkably stabilized Cu+, thereby boosting the ECR to produce C2H4. This work offers an alternative strategy to enhance the ECR efficiency by crystal facet engineering.  相似文献   

14.
利用电催化技术将CO2转化为小分子燃料或高值化学品是实现原子经济、构建人工碳循环的绿色能源技术之一。电催化还原CO2 (ECR)的反应条件温和、产物多样(C1、C2和C2+),有极大的发展潜力。然而,ECR技术面临一些需要解决的挑战性问题,包括电极过电势高、C2及C2+产物选择性低、伴随析氢反应等。解决这些问题的关键在于创制低成本、高性能电催化剂。近年来,石墨烯基电催化剂的研究成为ECR领域的热点之一,原因包括:1)在电化学环境中稳定性好;2)表面原子、电子结构可调,进而实现材料催化活性的调控;3)维度可调,易暴露较大的比表面积和形成层次孔结构;4)耦合石墨烯的高导电性与特定材料的高活性,可协同提升ECR催化性能。本文评述了石墨烯基材料在ECR中的研究进展,详述了石墨烯基电催化剂的构筑方法,探讨并梳理了石墨烯的点/线缺陷、表面官能团、掺杂原子构型、金属单原子种类、材料表界面性质等与ECR性能之间的本征构效关系。最后展望了石墨烯基催化剂在ECR领域中的挑战和未来发展。  相似文献   

15.
为了促进CO2电化学还原(ECR)制备燃料和高值化学品,开发高活性、低成本和高选择性催化剂至关重要.本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂.并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N2吸附/脱...  相似文献   

16.
电催化二氧化碳还原反应(E-CO2RR)可在温和条件下将CO2转化成高附加值燃料或化学品,近年来受到广泛关注,其在实际反应中涉及到气体扩散和多电子转移等复杂过程,构筑高效、稳定的催化电极是其发展的核心之一。然而,传统涂敷电极制备时,需要将催化剂与粘结剂混合涂覆于集流体表面,此过程会造成活性位点包埋和传质过程受限,致使催化剂活性位利用率下降,同时在反应过程中电极表面容易粉化,造成稳定性下降,难以重复利用。因此,如何调控电极反应界面,提升催化剂活性位的利用率仍面临挑战。将催化剂原位生长于集流体上得到的一体化电极可直接应用于电催化反应,不仅有利于提升活性位利用率以及电荷传输能力,还能有效调控三相界面处的微观反应环境(如pH、反应物及反应中间体的浓度等),从而实现电催化性能强化。本文综述了一体化电极用于E-CO2RR的最新进展,分析了结构和表界面调控对E-CO2RR性能的影响规律,并对该领域仍然存在的挑战和未来一体化E-CO2RR电极的发展进行了评述与展望。  相似文献   

17.
近年来,催化CO2加氢合成甲醇被视为有望解决温室效应和燃料枯竭的有效途径。目前,铜基催化剂因具有较高的反应活性被广泛应用于工业生产。然而,竞争逆水煤气变换反应产生的CO导致甲醇选择性较低,同时副产物水引起Cu发生不可逆烧结,进而降低甲醇产率。众所周知,CO能够调整分子的表面竞争吸附和活性位的氧化还原行为,本工作拟向原料气中掺入具有还原性的CO以抑制逆水煤气变换反应和防止表面氧化中毒。另一方面,通常认为铜基催化的CO2加氢制甲醇是结构敏感性反应,不同的前驱体能够显著影响催化剂结构和形貌,进而影响催化活性。因此,我们首先通过共沉淀法和蒸氨法制备了含有类水滑石前驱体(CHT-CZA)和复合物前驱体(CNP-CZA)结构的Cu/ZnO/Al2O3催化剂。随后,为探究CO掺杂后反应机理,在250 ℃,5 MPa的反应条件下,含有不同比例CO的原料气中(CO2:CO:H2:N2 = x:(24.5 - x):72.5:3)评价两种催化剂对甲醇合成的性能。评价结果显示两种催化剂反应性能趋势相同,随着CO含量增加,CO2转化率和STYH2O不断降低,STYMeOH逐渐增加。X射线光谱(XPS)显示随CO含量增加,催化剂表面还原性Cu比例增加。评价和表征结果说明CO引入抑制了逆水煤气变换反应的发生,通过还原被H2O氧化的活性Cu表面,促使更多的活性Cu位点暴露参与甲醇合成。另一方面,透射电镜(TEM)显示掺杂的CO会过度还原而引起颗粒团聚,导致催化剂逐渐失活。相比之下,含有水滑石前驱体的催化剂在任何气氛下均表现出更加优越的反应性能和长周期稳定性。这可归因于类水滑石前驱体独特的片层结构通过结构限域作用有效避免了因CO过度还原而导致的金属颗粒团聚,从而减少活性位点损失。  相似文献   

18.
电催化二氧化碳还原(ECR) 制备高值化学品被认为是在碳中和背景下实现可再生能源存储及降低CO2浓度的一种有效策略。为了实现此目标,催化剂的开发与设计是ECR研究的关键。单原子催化剂(SACs) 因其独特的电子结构、明确的配位环境和极高的原子利用率,近年来在ECR领域引起了广泛关注。通过调节SACs的中心金属元素种类和局部配位结构,可有效调节SACs对CO2和其还原中间体的吸附强度和催化活性。本文总结了SACs在ECR领域所取得的最新研究进展,重点讨论了SACs的配位结构及其与载体之间的相互作用对催化活性的影响以及相关调控策略,最后,提出了SACs应用于ECR所面临的机遇与挑战。  相似文献   

19.
The combustion of fossil fuels increases atmospheric carbon dioxide (CO2) concentrations, leading to adverse impacts on the planetary radiation balance and, consequently, on the climate. Fossil fuel utilization has contributed to a marked rise in global temperatures, now at least 1.2 ℃ above 'pre-industrial' levels. To meet the 2015 Paris Agreement target of 1.5 ℃ above pre-industrial levels, considerable efforts are required to efficiently capture and utilize CO2. Among the different strategies developed for converting CO2, electrochemical CO2 reduction (ECR) to valuable chemicals using renewable energy is expected to revolutionize the manufacture of sustainable "green" chemicals, thereby achieving a closed anthropogenic carbon cycle. However, CO2 is a thermodynamically stable and kinetically inert molecule that requires high electrical energy to bend the linear O=C=O bond by attacking the C atom. To facilitate the ECR with good energy efficiency, it is essential to lower the reaction overpotential as well as maintain a high current density and desirable product selectivity; therefore, the design and development of advanced electrocatalysts are crucial. A plethora of heterogeneous and homogeneous materials has been explored in the ECR. Among these materials, single-atom catalysts (SACs) have been the focus of most extensive research in the context of ECR. A SAC with isolated metal atoms dispersed on a supporting host exhibits a unique electronic structure, well-defined coordination environment, and an extremely high atom utilization maximum; thus, SACs have emerged as promising materials over the last two decades. Single-atom catalysis has covered the periodic table from d-block and ds-block metals to p-block metals. The types of support materials for SACs, ranging from metal oxides to tailored carbon materials, have also expanded. The adsorption strength and catalytic activity of SACs can be effectively tuned by modulating the central metal and local coordination structure of the SACs. In this article, we discuss the progress made to date in the field of single-atom catalysis for promoting ECR. We provide a comprehensive review of state-of-the-art SACs for the ECR in terms of product distribution, selectivity, partial current density, and performance stability. Special attention is paid to the modification of SACs to improve the ECR efficiency. This includes tailoring the coordination of the heteroatom, constructing bimetallic sites, engineering the morphologies and surface defects of supports, and regulating surface functional groups. The correlation of the coordination structure of SACs and metal-support interactions with ECR performance is analyzed. Finally, development opportunities and challenges for the application of SACs in the ECR, especially to form multi-carbon products, are presented.  相似文献   

20.
实现碳氮循环是人类社会发展的迫切要求,也是催化领域的热门研究课题。在可再生能源的推动下,电催化技术引起了人们的广泛关注,且可以通过改变反应电压获得不同的目标产品。基于此,电催化技术被认为是缓解当前能源危机和环境问题的有效策略,对实现碳中和具有重要意义。其中,电催化CO2还原反应(CO2RR)和N2还原反应(N2RR)是一种有前途的小分子转化策略。然而,CO2和N2均为线性分子,其中C=O和N≡N键的高解离能导致了它们高的化学惰性。此外,最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间的巨大能量间隙使它们具有高的化学稳定性;且CO2和N2的低质子亲和力使它们难以被直接质子化。另一方面,由于CO2RR和N2RR与析氢反应(HER)具有相近的氧化还原电位,造成其与HER之间存在竞争性关系,这也是致使催化剂在CO2RR和N2RR转化效率低的重要影响因素。因此,CO2RR和N2RR仍然面临着过电位高及法拉第效率低等问题。为了克服这些瓶颈,人们为提升CO2RR和N2RR电催化剂性能做出了很多努力。众所周知,电催化过程发生在催化剂表面,主要涉及质量传递和电子转移等过程。由此可见,催化剂的性能与其质量和电子传输能力密切相关,而调控催化剂表面结构可以优化活性点的质量和电子转移行为。电催化剂的缺陷和界面工程可通过表面原子工程来实现电子结构调控,对于提高气体吸附能力、抑制HER、富集气体及稳定中间产物等具有重要意义。到目前为止,所报道的各种缺陷和复合电催化剂在提高CO2RR和N2RR催化性能等方面均表现出巨大的潜力。在此,我们综述了CO2RR和N2RR中催化剂缺陷工程及界面工程的最新进展;首先讨论了四种不同的缺陷(空位、高指数晶面、晶格应变和晶格无序)对CO2RR和N2RR性能的影响;然后,总结了界面工程在聚合物-无机复合材料催化剂中的重要作用,并给出了典型实例;最后,展望了原子级电催化剂工程的发展前景,提出了开发和设计高效CO2RR和N2RR电催化剂的未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号