首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N′-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and 1H-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm. 1H-NMR experiments also inferred that the methyl proton of N-isopropylacrylamide appeared three peaks and responded to hydrogen-bonding interaction including polymer chain with water molecular, intramolecular interaction and intermolecular interaction, respectively.  相似文献   

2.
Here we report the synthesis and physicochemical characterization of novel hybrid core/shell type ZnO/poly(ethylcyanoacrylate) colloidal particles. It is expected that coating ZnO colloidal particles with biocompatible and biodegradable poly(alkylcyanoacrylates) will pave the way toward the potential application of ZnO colloidal particles in biomedical research. Recent findings of cell selective toxicity indicate a potential utilization of ZnO colloidal particles in the treatment of cancer. For this purpose, ZnO colloidal particles have to be selectively delivered to the site of action by a suitable biocompatible and biodegradable carrier system. Toward this goal, poly(alkylcyanoacrylates) meet ideally the requirements for carrier systems in drug delivery due to their biocompatibility, biodegradability, low toxicity, and ability to overcome the multidrug resistance in cancer cells.  相似文献   

3.
Polystyrene core microspheres of narrow-size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Polystyrene/polychloromethylstyrene and polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell microspheres of narrow-size distribution were prepared by seeded emulsion polymerization of chloromethylstyrene or chloromethylstyrene and divinylbenzene in the presence of the polystyrene core microspheres at 71 °C. Core-shell particles with different properties (size, surface morphology, and composition) have been prepared by changing various parameters belonging to the emulsion polymerization process, e.g., volume of the chloromethylstyrene and the volume ratio of chloromethylstyrene to divinylbenzene. Dissolution of the polystyrene core of the polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell particles resulted in the formation of crosslinked hollow polychloromethylstyrene microspheres, broken crosslinked polychloromethylstyrene shells, or particles containing voids, depending on the composition of the polystyrene/poly(chloromethylstyrene-divinylbenzene) particles.  相似文献   

4.
O-Lauroyl chitosan/poly(L-lactide) (OCS/PLLA) blend membranes with different compositions were prepared by solution-casting approach using chloroform as common solvent. The experimental results of FT-IR, DSC and WAXD indicated that inter-association hydrogen-bond interactions existed between OCS and PLLA in the blend membranes. And SEM observation confirmed that the blend membranes with suitable compositions were compatible.  相似文献   

5.
Nonspherical polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles having a dent were prepared by releasing toluene from PS/PMMA/toluene droplets dispersed in a poly(vinyl alcohol) aqueous medium. An ex-centered PS-core/PMMA-shell morphology, in which a part of the PS core contacted with the aqueous medium and toluene partitioned more in the PS core than in the PMMA shell, was formed in the polymers/toluene droplet in the process of phase separation therein with releasing toluene. The volume of the dent became bigger with an increase in the PS content and in the toluene content partitioned in the PS core.Part CCLXI of the series Studies on Suspension and Emulsion.  相似文献   

6.
采用自设计的双螺杆结构挤出制备聚乳酸(PLA)/醋酸淀粉(AS)的全生物降解材料,考察材料的AS的含量和取代度对复合材料动态流变性能、机械性能的影响。研究结果表明,AS含量明显影响复合材料的力学性能、复合黏度和储能模量:当AS含量从45%增加到70%,材料的拉伸强度下降,复数黏度和储能模量则提高。随着AS取代度由1.0上升为3.0,复合材料的复数黏度和储能模量下降,拉伸强度由12.0MPa上升为15.5MPa。对复合材料进行电镜扫描分析发现,AS以海岛结构形式分散在PLA的连续相中,取代度2.0的AS与PLA相容性最好,当其质量含量达到70%,材料的拉伸强度仍然不低于10.0MPa,具有较好的机械强度。  相似文献   

7.
Polystyrene microspheres with an average diameter of 55 μm were prepared by suspension polymerization via oxidation of the monomer by ammonium persulfate. Poly-3-aminophenylboronic acid was grafted onto the surfaces of the polystyrene microspheres to form polystyrene/poly-3-aminophenylboronic acid core- shell micospheres. The samples were characterized by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nitrogen adsorption/desorption method. The results show that poly-3-aminophenylboronic acid was successfully grafted to the surfaces of the polystyrene microspheres by aromatic ring electronpairing interaction. The surfaces of the core-shell microspheres possessed a porous structure, with the average pore diameter of 30.2 nm and the BET surface area of 193.26 m2/g. __________ Translated from Chinese Journal of Applied Chemistry, 2008, 25(4) (in Chinese)  相似文献   

8.
Poly(propylene glycol) [α-hydro-ω-hydroxypoly(oxypropylene)] of number-average molar mass n ≈ 2000 g · mol−1 (PPG2000) was cyclised with high conversion (ca. 75%) by reaction with dichloromethane in the presence of powdered KOH. The cyclic product was separated from chain extended polymer by preparative GPC, giving an overall yield of polymer (n ≈ 2000 g · mol−1, narrow molar mass distribution) in excess of 50%. Characterisation by analytical GPC and 13C NMR spectroscopy confirmed cyclisation. DEPT and 1H-coupled NMR spectra were used to show that the links in cyclic poly(oxypropylene) were 77% single acetal, 12% double acetal and 11% triple acetal (or higher). This complexity probably results from competitive reaction with water introduced with KOH.  相似文献   

9.
Poly(3-difluoroaminomethyl-3-methyl oxetane (DFAMO)/3-azidomethyl-3-methyl oxetane (AMMO)) (PDA) can be used as an energetic pre-polymer in the binder systems of solid propellants and polymer-bonded explosives (PBXs). The cationic solution polymerization affords PDA using butane diol (BDO) and boron trifluride etherate (TFBE) as initiator and catalyst, separately. Its molecular structure is characterized and thermal decomposition behavior is investigated by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The copolymer has good thermal stability and exhibits a three-step mass-loss process with the first two steps mainly belonging to the thermal decomposition of difluoroamino and azido groups, respectively. DSC method is performed to evaluate the compatibility of PDA with some energetic components and inert materials. More than half of the selected materials are compatible with PDA, which including cyclotrimethylenetrinitramine (RDX), 2,4,6-trinitrotoluene (TNT), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), pentaerythritol tetranitrate (PETN), ammonium perchlorate (AP), ammonium nitrate (AN), potassium nitrate (KNO3), aluminum powder (Al), aluminum oxide (Al2O3), 2-nitrodiphenylamine (NDPA) and 1,3-diethyl-1,3-diphenyl urea (C1).  相似文献   

10.
Polymeric dispersions with a concentric core-shell structure of the latex particles were obtained by a two-stage emulsion polymerization technique. Conditions for the formation of shells on polymeric seeds are discussed. SANS and SAXS investigations were carried out in order to verify the core-shell structure of the particles. DSC and IR measurements indicate the existence of an interfacial layer between core and shell polymers. The results are transferred to emulsion polymers containing inorganic filler particles.  相似文献   

11.
PVA-g-PS复合微球的制备与粒径控制研究   总被引:2,自引:0,他引:2  
由链转移自由基聚合与端基置换反应法,合成了苯乙稀基单封端的聚醋酸乙烯酯(PVAc)大分子单体,使其与苯乙烯在乙醇/水的混合介质中进行自由基分散共聚,得到了表面以PVAc为接枝链的聚苯乙烯(PVAc-g-PSt)微球。将所得微球在碱性条件下醇解,形成了以亲水性聚乙烯醇(PVA)为壳、聚苯乙烯为核的复合微球(PVAc-g-PSt)。用核磁共振对聚合物的结构进行表征,定出了PVAc末端双键的含量;并用激光光散射、扫描电子显微镜对微球的粒径与形态进行了表征。研究结果表明,在共聚反应体系中大分子单体的分子量与浓度、苯乙烯浓度、引发剂浓度及溶剂的组成对微球的形态和粒径大小有明显影响。  相似文献   

12.
Dark blue poly(copper 2,3,9,10,16,17,23,24-octacyanophthalocyanine) has been prepared by reacting 1,2,4,5-tetracyanobenzene with cuprous chloride in 1-methyl-2-pyrrolidone at ca. 150°C. The product has been characterized by elemental analysis, thermal analysis, infrared and UV-VIS spectroscopies. The polymer has high purity and exhibits good thermal stability in an inert atmosphere.  相似文献   

13.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

14.
A polystyrene‐block‐oligo(2‐tert‐butylbutadiene)‐block‐polystyrene triblock copolymer was prepared and cyclized by end‐to‐end ring closure. Ring‐shaped polystyrene‐block‐oligo(2‐tert‐butylbutadiene) was isolated from the coupling product via gel permeation chromatography (GPC) fractionation. The ring polymer was ozonized for decomposition of the oligo(2‐tert‐butylbutadiene) sequences selectively referring to the linear molecule. From GPC analysis of the decomposed products by ozonolysis, it was quantitatively confirmed that the fractionated product was 86% ring molecules. Single chain dimensions of the ring and linear molecules in a good solvent, benzene, and in a θ solvent, cyclohexane, were measured with small‐angle neutron scattering. The ratios of the radii of gyration, Rg(ring)/Rg(linear), were 0.780 in benzene and 0.789 in cyclohexane. These were compared with theoretically predicted values. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1582–1589, 2002  相似文献   

15.
Adsorption of the thermoresponsive copolymer of poly(N-isopropylacrylamide-co-4-vinylpyridine) (PNIPAM-co-P4VP) onto the core-shell microspheres of poly(styrene-co-methylacrylic acid) (PS-co-PMAA) is studied. The core-shell PS-co-PMAA microspheres are synthesized by one-stage soap-free polymerization in water. The copolymer of PNIPAM-co-P4VP is synthesized by free radical polymerization of N-isopropylacrylamide and 4-vinylpyridine in the mixture of DMF and water using K2S2O8 as initiator. Adsorption of PNIPAM-co-P4VP onto the core-shell PS-co-PMAA microspheres results in formation of the composite microspheres of PS/PMAA-P4VP/PNIPAM. The driven force to adsorb the copolymer of P4VP-co-PNIPAM onto the core-shell PS-co-PMAA microspheres is ascribed to hydrogen-bonding and electrostatic affinity between the P4VP and PMAA segments. The resultant composite microspheres of PS/PMAA-P4VP/PNIPAM with surface chains of PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 33 °C.  相似文献   

16.
Core-shell structured polyacrylic(named CSSP) impact modifiers consisting of a rubbery poly(n-butyl acrylate) core and a rigid poly(methyl methacrylate) shell with a size of about 353 nm were prepared by seed emulsion polymerization. The CSSP modifiers with different core-shell weight ratios(90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 60/40) were used to modify the toughness of poly(butylene terephthalate)(PBT) by melt blending. It was found that the polymerization had a very high instantaneous conversion(> 95.7%) and overall conversion(99.7%). The morphology of the core-shell structure was confirmed by means of transmission electron microscopy. Scanning electron microscopy was used to observe the morphology of the fractured surfaces. Differential scanning calorimeter was used to study the crystallization behaviors of PBT/CSSP blends. The dynamic mechanical analyses of PBT/CSSP blends showed two merged transition peaks of PBT matrix, with the presence of CSSP core-shell structured modifier, that were responsible for the improvement of PBT toughness. The results indicated that the notch impact strength of PBT/CSSP blends with a core-shell weight ratio of 75/25 was almost 8.64 times greater than that of pure PBT, and the mechanical properties agreed well with the SEM observation.  相似文献   

17.
Polystyrene (PSt)/poly (4-butyltriphenylamine; PBTPA) composite particles was prepared by a chemical oxidative seeded dispersion polymerization of (4-butyltriphenylamine) with PSt seed particles that were prepared by nonaqueous dispersion polymerization of styrene. Monodisperse composite particles were obtained when the ratio of monomer to seed, the rate of monomer feed, and poly(N-vinyl pyrrolidone; PVP) concentration was appropriately selected. The introduction of PBTPA was confirmed by the presence of the characteristic absorption band attributed to PBTPA from a Fourier transform infrared spectra. The solvent extraction with ethyl acetate revealed that composite particles consisted of PSt core and PBTPA shell. Then two-dimensional arrays of composite particles were also fabricated.  相似文献   

18.
以乙酸锌为前驱物,乙醇为溶剂,油酸钠为表面修饰剂,采用溶液化学法,在乙醇体系中制得纳米Zn O。然后缓慢加入一定量的硝酸银乙醇溶液,在乙醇的还原作用下将Ag+还原为Ag纳米粒子,制得Zn O/Ag复合纳米粒子。通过紫外-可见吸收光谱(UV-Vis)、荧光光谱(FL)、透射电子显微镜(TEM)和X射线衍射(XRD)等方法对所制备的氧化锌-银复合纳米粒子样品进行表征。结果表明,所合成的Zn O/Ag复合纳米粒子为球形,尺寸为20-30nm且粒径分布较窄。Ag纳米粒子附着于Zn O纳米粒子表面,并起到良好的表面修饰作用。对制备Zn O/Ag复合纳米粒子的机理进行了初步探究。  相似文献   

19.
Newly designed PS/PEO alternating branched polymacromonomers have been obtained by polycondensation of alpha-dicarboxy-functionalized polystyrene and alpha-dihydroxy-functionalized polyethyleneoxide. 4-[3,5-Bis(methoxycarbonyl)phenoxymethyl]benzyl bromide was used as atom-transfer radical polymerization (ATRP) initiator for the synthesis of alpha-dicarboxy functionalized polystyrenes. These macromonomers possess low polydispersities and molecular weights in the range of 7000 to 100,000, as proved by gel permeation chromatography (GPC) and 1H NMR. Alpha-dihydroxy functionalized polyethyleneoxide (PEO) was synthesized by treatment of monofunctionalized PEO with 3,5-bis(benzyloxy)benzoyl chloride. Polycondensation of the alpha-dicarboxy PS with the alpha-dihydroxy PEO in solution or in bulk resulted in alternating PS/PEO polymacromonomers, which were effectively purified from the unreacted macromonomers and characterized by using 1H NMR, GPC, thermal analysis, and optical microscopy. Light-scattering measurements in organic solvents like THF or dioxane have shown that these polymacromonomers form stable micelles.  相似文献   

20.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号