首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive impedance characteristics of two electrodes electrochemical cell has been presented. In this method a multisinusoidal current excitation signal is used. The change of potential of both the electrodes are all registered as a function of time. The proposed method gives the possibility of determining the impedance of both electrodes individually as well as the impedance of a two-electrode system. Additional application of short time Fourier transform of time registers allows the determination of changes in the measured impedance values over time. In order to present the possibilities of the proposed technology it was applied to a process of charging commercially available electrochemical cell NiCd. The new measurement methodology allows understanding the dynamics of processes occurring in a electrochemical cell. This is the basis for the development of effective and affordable electro-catalysts. Thanks to results obtained with Dynamic Electrochemical Impedance spectroscopy (DEIS) method it is possible to understand the mechanisms and kinetics of processes occurring in electrochemical cells while charging.  相似文献   

2.
A long term study of the voltage and electrochemical impedance characteristics of Ag/AgCl electrodes used in Harned Cell measurement of pH is presented. By all the measures investigated the electrodes are shown to degrade only slowly until approximately 200 days after manufacture, after which time the rate of degradation and critical failure of the electrodes increases. The absolute voltage drift of the electrodes may not be easily measured, so parameters determined directed or indirectly by electrochemical impedance spectroscopy have been assessed as a method to produce an alternative indication of electrode integrity. In this respect, resistance to charge transfer has been shown to be a very sensitive measure of changes in the characteristics of the electrodes, and the most closely related to the observed changes in voltage. Evidence is presented to support the hypothesis that the majority of electrode degradation (excluding critical failure) comes from the increased blocking of the microporous structure of the electrodes.  相似文献   

3.
Electromembrane extraction (EME) was carried out using a novel instrumentation capable of impedometric monitoring of the system during the extraction. This instrumentation involves a classical two-electrode assembly fed by two time-resolved potential functions, the first for the extraction of analyte and the second for obtaining the impedance information. The impedometric analysis of the system was achieved by Laplace transformation of the current recorded during the extraction. It has been shown that the obtained impedance information can be converted to very useful knowledge about time dependence of double layer capacitance, kinetics of analyte depletion, total permeability of the SLM and the effect of experimental parameters on system behavior. It has also been shown that the impedance analysis is a powerful tool for the estimation of optimum experimental parameters without determination of analyte in the acceptor phase.  相似文献   

4.
A new biosensing system is described that is based on the aggregation of nanoparticles by a target biological molecule and dielectrophoretic impedance measurement of these aggregates. The aggregation process was verified within a microchannel via fluorescence microscopy, demonstrating that this process can be used in a real time sensor application. Positive dielectrophoresis is employed to capture the nanoparticle aggregates at the edge of thin film electrodes, where their presence is detected either by optical imaging via fluorescence microscopy or by measuring the change in electrical impedance between adjacent electrodes. The electrical detection mechanism demonstrates the potential for this method as a micro total analysis system (microTAS).  相似文献   

5.
Mixed ion/electron conducting polymer layers based on polypyrrole have been used as internal reference electrodes in all-solid-state pH glass electrodes. The effect of the nature and composition of the polymer used and of the deposition technique applied on the performance of the resulting sensor has been studied. For this purpose, crucial sensor properties, e.g. parameters of the calibration function, response behaviour and complex impedance, have been determined experimentally at room temperature. The results show that several properties studied remained nearly uninfluenced by changes of the polymer composition. The zero potential point of the calibration line was found to be the most sensitive parameter. Principally, almost all mixed conducting polymers used seems to result in a stable charge transfer in the system polymer/glass.  相似文献   

6.
In this article a new parallel electrode structure in a microfluidic channel is described that makes use of a floating electrode to get a homogeneous electrical field. Compared to existing parallel electrode structures, the new structure has an easier production process and there is no need for an electrical connection to both sides of the microfluidic chip. With the new chip design, polystyrene beads suspended in background electrolyte have been detected using electrical impedance measurements. The results of electrical impedance changes caused by beads passing the electrodes are compared with results in a similar planar electrode configuration. It is shown that in the new configuration the coefficient of variation of the impedance changes is lower compared to the planar configuration (0.39 versus 0.56) and less dependent on the position of the beads passage in the channel as a result of the homogeneous electrical field. To our knowledge this is the first time that a floating electrode is used for the realization of a parallel electrode structure. The proposed production method for parallel electrodes in microfluidic channels can easily be applied to other applications.  相似文献   

7.
A gel electrolyte of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI)-polyethylene oxide (PEO) in an organic solvent mixture has been prepared and examined for supercapacitor applications by using activated carbon electrodes. The solvent was a mixture of propylene carbonate, dimethyl carbonate, and ethylene carbonate at equal molar ratio, and also, a propylene carbonate-based gel was used for a comparison. The polymer-salt interaction was viewed by infrared spectral study. The cells have been characterized in a two-electrode type using linear sweep voltammetry, cyclic voltammetry, galvanostatic cycling, and impedance techniques at 22 °C. The voltammograms evidence symmetry and reversibility of the cells. The ternary gel has shown better electrochemical performances. Moreover, the cell operative potential window was found to be stable at 2.5 V with high specific capacitance and also a good efficiency at low charge rate. The typical obtained specific capacitance, real power, and energy density values are 24 F g?1, 0.52 kW kg?1, and 18.7 Wh kg?1, respectively, which may be viewable for a compact capacitor.  相似文献   

8.
Electrochemical performance of the pre-lithiated graphite and the as-assembled lithium-ion capacitors (LICs) were investigated within the Li/graphite two-electrode cell and activated carbon (AC)/graphite two-electrode cell, respectively. The morphologies of the electrodes were characterized by scanning electron microscopy (SEM). The Li intercalation of Li/graphite two-electrode cell was performed using short circuiting and galvanostatic charging techniques. The Li pre-doping process was characterized by electrochemical impedance spectroscopy (EIS). The cycle performance of the LICs were investigated at the rates of 1–20 C between the cut-off voltage at 2 to 4 V. The results demonstrated that the LIC cells with 8 h pre-doping time have the best cycle performance at the high rate of 10 C. Li pre-doping methodology plays a crucial role in the electrochemical performance of the graphite electrode and the as-assembled LICs.  相似文献   

9.
A four-electrode impedance-based microfluidic device has been designed with tunable sensitivity for future applications to the detection of pathogens and functionalized microparticles specifically bound to molecular recognition molecules on the surface of a microfluidic channel. In order to achieve tunable sensitivity, hydrodynamic focusing was employed to confine the electric current by simultaneous introduction of two fluids (high- and low-conductivity solutions) into a microchannel at variable flow-rate ratios. By increasing the volumetric flow rate of the low-conductivity solution (sheath fluid) relative to the high-conductivity solution (sample fluid), increased focusing of the high-conductivity solution over four coplanar electrodes was achieved, thereby confining the current during impedance interrogation. The hydrodynamic and electrical properties of the device were analyzed for optimization and to resolve issues that would impact sensitivity and reproducibility in subsequent biosensor applications. These include variability in the relative flow rates of the sheath and sample fluids, changes in microchannel dimensions, and ionic concentration of the sample fluid. A comparative analysis of impedance measurements using four-electrode versus two-electrode configurations for impedance measurements also highlighted the advantages of using four electrodes for portable sensor applications.
A four-electrode sensor with hydrodynamic focusing to confine that the current was characterized for tunable sensitivity  相似文献   

10.
Zhao L  Li X  Lin Y  Yang L  Yu P  Mao L 《The Analyst》2012,137(9):2199-2204
This study demonstrates a new electrochemical impedance spectroscopic (EIS) method for measurements of the changes in membrane permeability during the process of cell anoxia. Madin-Darby canine kidney (MDCK) cells were employed as the model cells and were cultured onto gelatin-modified glassy carbon (GC) electrodes. EIS measurements were conducted at the MDCK/gelatin-modified GC electrodes with Fe(CN)(6)(3-/4-) as the redox probe. The anoxia of the cells grown onto electrode surface was induced by the addition of carbonycyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) into the cell culture, in which the MDCK/gelatin-modified GC electrodes were immersed for different times. The EIS results show that the presence of FCCP in the cell culture clearly decreases the charge-transfer resistance of the Fe(CN)(6)(3-/4-) redox probe at the MDCK/gelatin-modified GC electrodes, and the charge-transfer resistance decreases with increasing time employed for immersing the MDCK/gelatin-modified GC electrodes into the cell culture containing FCCP. These results demonstrate that the EIS method could be used to monitor the changes in the cell membrane permeability during the FCCP-induced cell anoxia. To simulate the EIS system, a rational equivalent circuit was proposed and the values of ohmic resistance of the electrolyte, charge-transfer resistance and constant phase elements for both the gelatin and the cell layers are given with the fitting error in an acceptable value. This study actually offers a new and simple approach to measuring the dynamic process of cell death induced by anoxia through monitoring the changes in the cell membrane permeability.  相似文献   

11.
A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.  相似文献   

12.
Karlberg B 《Talanta》1975,22(12):1023-1027
The stability of the potential of glass electrodes has been studied. The potential changes only slightly during the hydration of freshly etched electrodes. With glass electrodes previously used in alkaline solutions, structural transformations within the gel-layer give rise to large potential drifts in neutral or acidic test solutions. In alkaline solutions all glass electrodes are attacked, especially the low-temperature type, and the potential changes with time. Drying hydrated electrodes affects the stability only slightly. Alternating transfers between acidic and basic solutions decrease the stability. Recommendations for precise measurements with glass electrodes are given.  相似文献   

13.
This paper introduces the method which allows determining the accurate electrode contributions during cyclic voltammetry (CV) scan of electrochemical capacitor. As a result of theoretical considerations, a calculation method which reveals voltammetry response of both electrodes during CV of two-electrode cell with reference is developed. The technique is based on the preservation of charge neutrality where the accurate potential sweep rate of individual electrode is dynamically assigned based on its total contribution to the total two-electrode cell voltage ramp. This practice should be used in the research with CV scans of energy storage devices in order to improve their precision. The technique is not an alternative to real three-electrode measurements, where constant sweep rate of working electrode is applied and an oversized auxiliary electrode is used, but it is rather a supplement, which allows observing the true electrode behavior during operation of the capacitor. The paper provides comparison of CV scans obtained with fixed scan rates of both electrodes with dynamic CV scan for electrochemical capacitors operating in aqueous media of 1 mol L?1 Li2SO4 and 7 mol L?1 KSCN. For the first time, the simple procedure is proposed to visualize the real qualitative electrode responses.  相似文献   

14.
A system for measuring impedance components has been elaborated. Its operating principle consists, as in the case of bridges, of compensating current and comparing the impedance of the studied system with the impedance of a standard set of capacitors and resistors. Measuring system with a three- and four-electrode potentiostat are described. The system with a three-electrode potentiostat can be used in the studies of double layer capacitance and of metal-electrolyte solution electrode kinetics. The system with a four-electrode potentiostat is suitable for measuring the impedance of interfaces separating immiscible electrolyte solutions or of membranes. It is an advantage of the proposed systems that they cannot “see” the impedance of current electrodes.  相似文献   

15.
 It is shown by capacitive monitoring that the self-assembly of alkanethiols on gold electrodes and desorption of these self-assembled monolayers from the electrodes are controlled by the electrode potential. At neutral pH, chemical adsorption of alkanethiols was observed at an electrode potential of +300 mV vs SCE, but only physical adsorption was detected when the electrode potential was −1400 mV vs SCE. At electrode potentials between these values (−300 mV, −600 mV), chemical adsorption of alkanethiols occurred, but the alkanethiol monolayers were not stable in the absence of the alkanethiol in the bulk solution and were desorbed from the gold electrode. The desorption rate was higher at more negative electrode potentials. These results can be used in designing methods for electrically addressable immobilization of different receptors on (micro)electrode arrays. This has been demonstrated by deposition of two different types of alkanethiols onto a two-electrode array. Received June 24, 1998. Revision October 19, 1998.  相似文献   

16.
基于纳米铂黑修饰的快速检测用乳酸生物传感器研究   总被引:2,自引:0,他引:2  
制备了一种可用于运动员血清样品乳酸快速检测的L-乳酸传感器.这种便携式平面电化学生物传感器采用金薄膜两电极系统;先后修饰纳米铂黑粒子层和铁氰化钾媒介体.铂黑纳米粒子沉积于金电极表面以提高传感器的灵敏度和稳定性,然后将乳酸氧化酶(LOD, E.C.1.1.3.2)和相关试剂固定在工作电极表面,铁氰化钾作为媒介体用以提高电极表面电子传递能力,并将工作电压降低为0.2 V.通过优化铂黑颗粒的沉积、乳酸氧化酶的浓度、铁氰化钾的浓度、添加剂的成分和浓度等条件,将传感器的检测范围扩展至1~20 mmol/L乳酸,检测灵敏度提高到1.43 μA·L/mmol,检测时间为50 s.生物传感器的批间r为0.0549;生物传感器经室温储存1年后仍可保持90%的活性.这种传感器成功地用于无稀释乳酸血清样品的快速检测,结合便携式检测仪(YT 2005-1 乳酸测试仪)将在快速诊断领域具有很好的应用前景.  相似文献   

17.
蔡雪凡  孙升 《电化学》2021,27(6):646
锂离子电池的全电池建模模拟对现代新能源领域的发展至关重要。伪二维(P2D)电化学模型是最常使用的全电池模拟模型,但一直被用于输入为电流,输出为电压的模拟中。本文基于P2D模型,通过对内电位、电极电位以及电池端电压的详细讨论,首次采用电压边界条件,利用COMSOL仿真软件完成了实验中常用的两电极体系和三电极体系的循环伏安法建模和模拟。并对比分析了两/三电极体系中扫描速率、颗粒半径、电极锂扩散速率以及最大嵌锂浓度这四个参数对循环伏安曲线形状的影响。结果表明,循环伏安测试时扫描速率越大,循环伏安曲线的峰值电流越大;固相锂扩散速率越大、电活性颗粒半径越小、最大嵌锂浓度越大,峰值电流越大。在相同的测试条件下,三电极体系比两电极体系的循环伏安图对称性更好,电流响应更大,并且颗粒半径、锂扩散速率及最大嵌锂浓度这三个参数对峰值电流的影响也更为明显。  相似文献   

18.
Impedance and capacitance studies have been performed with covalently coupled Glucose oxidase (GOD) enzyme, covalently coupled flavin adenine dinucleotide (FAD), reconstituted GOD enzyme and blank carbon paste electrodes to study the changes in the electrochemical interfacial properties. Impedance studies were performed using a low frequency impedance technique and the electrochemical surface capacitance was measured by a pulse technique. We have attempted to fit the experimental values to an equivalent circuit model. The Randles' cell circuit with Warburg impedance modeled well the experimental values and the behavior of the enzyme electrodes. The individual components of the model were calculated and the parameters were explained. The blank paste electrode showed a constant phase element behavior.  相似文献   

19.
A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt's salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.  相似文献   

20.
An electrical impedance spectroscopy (EIS) method and apparatus that eliminates the need for electrodes in the feed and permeate solutions was evaluated as a means of characterising physical and performance properties of polysulphone ultrafiltration membranes in situ. The membranes were sputter-coated on one side with platinum before assembly in the apparatus. Alternating electrical current used for impedance measurements was injected directly into the coat via dry electrical contacts with the edges of the membrane. As the frequency of the EIS measurement was increased the current increasingly dispersed into the solution via the interfacial region (double layer) and/or fouling layers that the coat formed with the solution. These spatial dispersions manifested as characteristic dispersions with frequency of the impedance of the system. Water flux measurements, field emission scanning electron microscopy and atomic force microscopy were also used to quantify the important membrane performance parameters of porosity and surface roughness. These estimates were in good agreement with the impedance model for the in situ membrane system that was fitted to the measured impedance dispersions. The study shows that EIS measurements potentially can quantify membrane performance parameters in situ better than those techniques that require disruption of the membrane separation process. The method also has the potential for monitoring the deposition of particulate that can lead to fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号