首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been made of the elastic and plastic deformation associated with submicrometer indentation of thin films on substrates using the finite element method. The effects of the elastic and plastic properties of both the film and substrate on the hardness of the film/substrate composite are studied by determining the average pressure under the indenter as a function of the indentation depth. Calculations have been made for film/substrate combinations for which the substrate is either harder or softer than the film and for combinations for which the substrate is either stiffer or more compliant than the film. It is found, as expected, that the hardness increases with indentation depth when either the yield strength or the elastic modulus of the substrate is higher than that of the film. Correspondingly, the hardness decreases with indentation depth when the yield strength or elastic modulus of the substrate is lower than that of the film. Functional equations have been developed to predict the hardness variation with depth under these different conditions. Finite element simulation of the unloading portion of the load displacement curve permits a determination of the elastic compliance of the film/substrate composite as a function of indentation depth. The elastic properties of the film can be separated from those of the substrate using this information. The results are in good agreement with King's analytical treatment of this problem.  相似文献   

2.
Load and depth sensing indentation methods have been widely used to characterize the mechanical properties of the thin film-substrate systems. The measurement accuracy critically depends on our knowledge of the effective elastic modulus of this heterogeneous system. In this work, based on the exact solution of the Green's function in Fourier space, we have derived an analytical relationship between the surface tractions and displacements, which depends on the ratio of the film thickness to contact size and the generalized Dundurs parameters that describe the modulus mismatch between the film and substrate materials. The use of the cumulative superposition method shows that the contact stiffness of any axisymmetric contact is the same as that of a flat-ended punch contact. Therefore, assuming a surface traction of the form of [1−(r/a)2]−1/2 with radial coordinate r and contact size a, we can obtain an approximate representation of the effective elastic moduli, which agree extremely well with the finite element simulations for both normal and tangential contacts. Motivated by a recently developed multidimensional nanocontact system, we also explore the dependence of the ratio of tangential to normal contact stiffness on the ratio of film thickness to contact radius and the Dundurs parameters. The analytical representations of the correction factors in the relationship between the contact stiffness and effective modulus are derived at infinite friction conditions.  相似文献   

3.
The paper investigates continuously changing wrinkle patterns of thin films bonded to a gradient substrate. Three types of gradient substrates including exponential,power-law, and symmetry models are considered. The Galerkin method is used to discretize the governing equation of film bonded to gradient substrates. The wavelength and the normalized amplitude of the wrinkles for substrates of various material gradients are obtained. The numerical simulation based on the finite element method(FEM) is used to evolve the wrinkle patterns. The result agrees well with that of the analytical model.It is concluded that localization of wrinkle patterns strongly depends on the material gradient. The critical membrane force depends on both the minimum value of wrinkle stiffness and the gradient of wrinkle stiffness when the wrinkle stiffness is at its minimum.This work provides a better understanding for local wrinkle formation caused by gradient substrates.  相似文献   

4.
A new model of thin film indentation that accounted for an apparent discontinuity in elastic strain transfer at the film/substrate interface was developed. Finite element analysis suggested that numerical values of strain were not directly continuous across the interface; the values in the film were higher when a soft film was deposited on a hard substrate. The new model was constructed based on this discontinuity; whereby, separate weighting factors were applied to account for the influence of the substrate in strain developed in the film and vice-versa. By comparing the model to experimental data from thirteen different amorphous thin film materials on a silicon substrate, constants in each weighting factor were found to have physical significance in being numerically similar to the bulk scale Poisson’s ratios of the materials involved. When employing these material properties in the new model it was found to provide an improved match to the experimental data over the existing Doerner and Nix and Gao models. Finally, the model was found to be capable of assessing the Young’s modulus of thin films that do not exhibit a flat region as long as the bulk Poisson’s ratio is known.  相似文献   

5.
基于经典层合板理论,建立了一个能同时测量薄膜-基底系统中薄膜的磁致伸缩系数、杨氏模量和泊松比的板模型.以前的研究计算薄膜磁致伸缩系数时,大多假设薄膜的弹性属性与相应的块材一致,由此导致的磁致伸缩系数计算是不准确的.在目前大多数方法中仅仅在使用一个单一的弹性各向同性基底中能够避免这个问题.该文模型在各向异性基底下同样适用,并且不要求薄膜的厚度远远小于基底厚度,因此也能够用来计算磁致伸缩应变和设计微电机械系统和生物微电机械系统.对已有的铁基非晶薄膜的实验数据,在不同磁场强度下,磁致伸缩系数的计算结果与已有模型进行了比较,它们之间的差异得到了解释.同时,还可以得到薄膜的弹性常数.  相似文献   

6.
纳米压痕法测磁控溅射铝薄膜屈服应力   总被引:1,自引:0,他引:1  
为了在考虑残余应力下测量出磁控溅射铝薄膜的屈服应力,提出了一种实验测量方法,通过曲率测试法和球形压头纳米压痕法测出磁控溅射铝薄膜的屈服应力.建立球形压痕力学模型,并用ANSYS对球形压痕进行力学有限元仿真,利用直流磁控溅射技术在硅基上淀积一层l μm厚的铝薄膜,首先通过曲率测试法测量膜内等双轴残余应力,再利用最小二乘曲线拟合法从薄膜/基底系统的球形压头纳米压痕实验数据中提取出铝薄膜的屈服应力,测得磁控溅射铝薄膜的屈服应力为371±89 Mpa.该方法也可以用来研究其他材料的薄膜和小体积材料的力学特性.  相似文献   

7.
The main difficulty with the characterization of thin coatings using depth-sensing indentation tests is related to the determination of the contributions of the substrate and the film to the measured properties. In this study, three-dimensional numerical simulations of the Vickers hardness test are used in order to examine the influence of the elastic and plastic properties of the substrate and the film on the composite’s Young’s modulus results. The hardness of the film is equal to or higher than the substrate hardness. A study of the stress distributions and the indentation geometry of composites, film/substrate, was performed, taking into account the relative mechanical properties of the film and substrate. In addition, stress evolution during indentation was studied, in order to quantify the critical indentation depth under which the substrate is not elastically deformed. The accurate evaluation of the Young’s modulus of the films using weight functions is also examined: some of these have previously been proposed and one was introduced for this study. Two different fitting procedures were used to compare the results obtained from eight fictive film/substrate combinations using six weight functions. The first procedure, commonly used, considers the substrate’s modulus as a known parameter in the fitting process. In the second, the film and the substrate’s modulus are considered as unknown variables that are calculated simultaneously during the fitting process. The validity of the conclusions obtained using the fictive materials was checked by applying the weight functions to four real composites.  相似文献   

8.
Polymer-supported metal films as interconnects for flexible, large area electronics may rupture when they are stretched, and the rupture strain is strongly dependent upon the film/substrate interfacial properties. This paper investigates the influence of interfacial properties on the ductility of polymer-supported metal films by modeling the microstructure of the metal film as well as the film/substrate interface using the method of finite elements and the cohesive zone model (CZM). The influence of various system parameters including substrate thickness, Young’s modulus of substrate material, film/substrate interfacial stiffness, strength and interfacial fracture energy on the ductility of polymer-supported metal films is systematically studied. Obtained results demonstrate that the ductility of polymer-supported metal films increases as the interfacial strength increases, but the increasing trend is affected distinctly by the interfacial stiffness.  相似文献   

9.
黄春阳  唐山  彭向和 《力学学报》2017,49(4):758-762
当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材料的表面失稳,即改变基底材料的泊松比,这种方法同时适用于不具有应变硬化的软材料.首先基于Neo-Hookean模型发展了小变形条件下双层结构表面失稳的理论模型,通过半解析的方法得到了表面失稳的临界应变;然后通过有限元计算与模拟,进一步验证了负泊松比基底可延缓表面失稳.结果表明:(1)当双层结构基底泊松比为正且趋于0.5(不可压缩)时,双层结构在较小的压缩应变下出现表面失稳;(2)当基底的泊松比为负且趋于-1时,可被压缩至46%而不出现表面失稳,即可膨胀基底能有效抑制薄膜的表面失稳.本文发展的方法及主要结果可为延展性电子器件的设计提供指导.  相似文献   

10.
Wrinkle-based measurement of elastic modulus for a nano-scale thin film was analyzed. As a demonstrative example, the wrinkles of Pt films on a Polydimethylsiloxane (PDMS) substrate under compressive loading were formed with a well-defined wavelength, corresponding to the difference of elastic moduli between the films and substrates. The elastic modulus of the Pt nano-scale thin film measured with the wrinkle-based measurement was found to be consistent with that independently measured with micro-tensile test. Uncertainty of the wrinkle-based measurement was analyzed to figure out the main uncertainty components for the evaluation of elastic modulus measurement, and guidelines for the reliable wrinkle-based measurement were suggested.  相似文献   

11.
利用能量法分析了层状材料(薄膜/基体)弹性接触问题,得到了具有一阶精度的闭合解,给出了求解薄膜弹性模量和泊松比的表达式,并与有限元的数值解进行了比较。二者比较结果表明:在工程材料范围内,理论解与数值解相差在6%以内;同时表明单相材料中剪切模量与弹性模量之间的关系也适用层状材料中的薄膜材料。在数值解的基础上,讨论了薄膜厚度与压头半径的比值对求解精度的影响,发现此比值对精度影响不大。通过对层状材料等效泊松比与等效弹性模量的定义,给出了用压痕实验测定薄膜泊松比与弹性模量的方法。  相似文献   

12.
This paper examines the frictionless adhesive elastic contact problem of a rigid sphere indenting a thin film deposited on a substrate. The result is then used to model the elastic phase of micro-nanoscale indentation tests performed to determine the mechanical properties of coatings and films. We investigate the elastic response including the effects of adhesion, which, as the scale decreases to the nano level, become an important issue. In this paper, we extend the Johnson–Kendall–Roberts, Derjaguin–Muller–Toporov, and Maugis–Dugdale half-space adhesion models to the case of a finite thickness elastic film coated on an elastic substrate. We propose a simplified model based on the assumption that the pressure distribution is that of the corresponding half-space models; in doing so, we investigate the contact radius/film thickness ratio in a range where it is usually assumed the half-space model. We obtain an analytical solution for the elastic response that is useful for evaluating the effects of the film-thickness, the interface film–substrate conditions, and the adhesion forces. This study provides a guideline for selecting the appropriate film thickness and substrate to determine the elastic constants of film in the indentation tests.  相似文献   

13.
The influences of elastic substrate on the indentation force, contact radius, electric potential and electric charge responses of piezoelectric film/substrate systems are investigated by the integral transform method. The film is assumed to be ideally bonded to the substrate and the contact interaction between the indenter and the film is assumed to be frictionless, with three kinds of axisymmetric insulating and conducting indenters (i.e., punch, cone and sphere) considered. Obtained results show that when the ratio of the contact radius to the film thickness is close to zero, the influences of the elastic substrate disappear and the indentation behaviors converge to the piezoelectric half space solutions while the indentation responses approach the corresponding ones of elastic half space as the ratio gets to infinity. The transition between the piezoelectric and the elastic half space indentation solutions for the film/substrate system is quantified in terms of the film thickness and the elasticity of the substrate. Finite element analysis on an insulating sphere indentation is conducted to verify the numerical calculations and good agreement is observed. The obtained results are believed to be useful for developing experimental techniques to extract the material properties of piezoelectric film/substrate systems.  相似文献   

14.
利用纳米硬度仪研究了在Cu基底上的Cu/Cr梯度膜的机械性能。梯度膜是通过将Cu靶和Cr靶同时溅射到Cu基底材料上,但两个靶的相对溅射功率随溅射时间变化而制备。利用Oliver and Pharr方法得到了膜随其厚度变化的硬度和弹性模量。然后利用加载/卸载/再加载的方法得到了在不同深度(即膜的厚度)压头平均压力与相对压人深度之间的关系曲线,在此曲线上可以明显反映出材料的屈服特性。  相似文献   

15.
Spherical indentation approach (Lee et al., 2005, Lee et al., 2010) for the evaluation of bulk material properties is extended to that for elastic–plastic properties of film-on-substrate systems. Our interest focuses on single isotropic, metallic, and elastic–plastic film on a substrate, and we do not consider the size effects in plasticity behavior. We first determine the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. Dimensional analysis affords the mapping parameters as functions of normalized indentation variables. An efficient way is further introduced to reduce both the number of analyses and the regression order of mapping functions. The new numerical approach to the film indentation technique is then proposed by examining the finite element solutions at the optimal point. With the new approach, the values of elastic modulus, yield strength, and strain-hardening exponent of film materials are successfully obtained from the spherical indentation tests. We have shown that the effective property ranges such as indenter properties, substrate modulus, and E/Es ratio can be extended without additional simulations and even loss of accuracy. For other ranges of variables or other properties, which are not dealt with in this study, this methodology is applicable through resetting FEA variables and finding proper normalized parameters.  相似文献   

16.
Recently, a nanoscale lattice material, based upon the gyroid topology has been self-assembled by phase separation techniques (Scherer et al., 2012) and prototyped in thin film applications. The mechanical properties of the gyroid are reported here. It is a cubic lattice, with a connectivity of three struts per joint, and is bending-dominated in its elasto-plastic response to all loading states except for hydrostatic: under a hydrostatic stress it exhibits stretching-dominated behaviour. The three independent elastic constants of the lattice are determined through a unit cell analysis using the finite element method; it is found that the elastic and shear modulus scale quadratically with the relative density of the lattice, whereas the bulk modulus scales linearly. The plastic collapse response of a rigid, ideally plastic gyroid lattice is explored using the upper bound method, and is validated by finite element calculations for an elastic-ideally plastic lattice. The effect of geometrical imperfections, in the form of random perturbations to the joint positions, is investigated for both stiffness and strength. It is demonstrated that the hydrostatic modulus and strength are imperfection sensitive, in contrast to the deviatoric response. The macroscopic yield surface of the imperfect lattice is adequately described by a modified version of Hill’s anisotropic yield criterion. The article ends with a case study on the stress induced within a gyroid thin film, when the film and its substrate are subjected to a thermal expansion mismatch.  相似文献   

17.
The mechanical properties of interphase regions at bi-material interfaces can be quite different from the surrounding bulk materials. For composite materials, this interphase region is usually thin but plays an important role in their overall mechanical properties. Nanoindentation has become a commonly used experimental technique for measuring the mechanical properties of materials, especially when one of the dimensions is small. However, the extraction of reduced elastic modulus from the nanoindentation of thin films on substrates can pose challenges due to the influence of the substrate. In this study, the nanoindentation of thin films on substrates has been examined with a view to extracting the reduced modulus of thin polymer films.Thin films of (3-aminopropyl)triethoxysilane (C9H23NO3Si, γ-APS) were deposited on silicon. An interfacial force microscope (IFM) was used to indent the γ-APS films. The effect of the substrate was studied by considering two very different thicknesses ( and ). The nanoindentation data were analyzed via contact mechanics theories and a finite element analysis that incorporated surface interactions. The analyses showed that nanoindentation experiments can provide reliable values of film modulus when the film is very different from the substrate. It was found that the commonly used rule of thumb that the indentation depth should be less than 10% of the thickness did not eliminate substrate effects for a wide range of material combinations. Instead, it is proposed that the contact radius should be less than 10% of the thickness so that contact mechanics theories for monolithic materials can be used without considering the presence of the substrate. The modulus of γ-APS polymer films and the surface energy between the tungsten tip of the IFM and γ-APS films were extracted and were related to their cure. A completely cured thick γ-APS film had a reduced modulus of . This value falls in the usual range for polymers due to the amorphous nature of the γ-APS films.  相似文献   

18.
A plane strain study of wedge indentation of a thin film on a substrate is performed. The film is modelled with the strain gradient plasticity theory by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406] and analysed using finite element simulations. Several trends that have been experimentally observed elsewhere are captured in the predictions of the mechanical behaviour of the thin film. Such trends include increased hardness at shallow depths due to gradient effects as well as increased hardness at larger depths due to the influence of the substrate. In between, a plateau is found which is observed to scale linearly with the material length scale parameter. It is shown that the degree of hardening of the material has a strong influence on the substrate effect, where a high hardening modulus gives a larger impact on this effect. Furthermore, pile-up deformation dominated by plasticity at small values of the internal length scale parameter is turned into sink-in deformation where plasticity is suppressed for larger values of the length scale parameter. Finally, it is demonstrated that the effect of substrate compliance has a significant effect on the hardness predictions if the effective stiffness of the substrate is of the same order as the stiffness of the film.  相似文献   

19.
The strain gradient work hardening is important in micro-indentation of bulk metals and thin metallic films, though the indentation of thin films may display very different behavior from that of bulk metals. We use the conventional theory of mechanism-based strain gradient plasticity (CMSG) to study the indentation of a hard tungsten film on soft aluminum substrate, and find good agreement with experiments. The effect of friction stress (intrinsic lattice resistance), which is important in body-center-cubic tungsten, is accounted for. We also extend CMSG to a finite deformation theory since the indentation depth in experiments can be as large as the film thickness. Contrary to indentation of bulk metals or soft metallic films on hard substrate, the micro-indentation hardness of a hard tungsten film on soft aluminum substrate decreases monotonically with the increasing depth of indentation, and it never approaches a constant (macroscopic hardness). It is also shown that the strain gradient effect in the soft aluminum substrate is insignificant, but that in the hard tungsten thin film is important in shallow indentation. The strain gradient effect in tungsten, however, disappears rapidly as the indentation depth increases because the intrinsic material length in tungsten is rather small.  相似文献   

20.
Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on finite element analysis is used, where non-dimensional characteristic functions derived from the force–displacement response are utilized to determine the elastic modulus and yield strength. To investigate the accuracies of the proposed methodologies, selected numerical experiments have been performed and excellent agreement was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号