首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic properties and magnetoresistance effects of Dy_{1-x}Gd_xMn_6Ge_6 (x=0.1-0.6) compounds have been studied by magnetic properties and resistivity measurements in applied magnetic fields up to 5T. The compounds with x=0.1, 0.2, 0.4 and 0.5 order antiferromagnetically at 425, 428, 430 and 432K, respectively, and there are second magnetic phase transitions below 100K. The compound with x=0.6 exhibits a transition from ferrimagnetic to antiferromagnetic, then to ferrimagnetic state again with decreasing temperature. Furthermore, it displays a field-induced metamagnetic transition, and its threshold field decreases with increasing temperature. The magnetoresistance curve of the compound with x=0.6 in applied magnetic fields up to 5T is presented and the magnetoresistance effects are related to the metamagnetic transitions.  相似文献   

2.
Magnetic transitions and magnetoresistance of HfFe6Ge6-type Y1-xDyxMn6Sn6 (x=0.2 and 0.3) have been investigated in the temperature range of 5-380K. It was found that the strong exchange interaction between the Dy and Mn sublattices results in incomplete ferromagnetism at low temperatures. At higher temperatures, the metamagnetic transition from an antiferromagnetic state to a ferrimagnetic state can be induced by a fairly small threshold field or by increasing temperature. The magnetic transition is accompanied by a large magnetoresistance effect of about -29% and -16% at 5K for x=0.2 and 0.3, respectively.  相似文献   

3.
The magnetic properties and magnetoresistance effect of Y1-xGdxMn6Sn6 (x=0-1) compounds have been investigated by magnetization and resistivity measurements in the applied field range (0-5 T). Compounds with x=0.4-1 display ferrimagnetic behaviours in the whole magnetic ordering temperature range, while compounds with x=0-0.2 display a field-induced metamagnetic transition, and the threshold fields decrease with increasing Gd content. The compounds with x=0.1-0.2 undergo an antiferromagnetic to ferromagnetic transition with increasing temperature. The cell-parameter a and c and cell-volume V of compounds (x=0-1) increase with increasing Gd content. It was found that the saturation magnetization M_s of the compounds (x=0.4-1) decreases, while the ordering points of the compounds (x=0-1)increase with increasing Gd content. A large MR effect was observed in the compound with x=0.2, and the maximum absolute value of MR at 5 K under 3 T is close to 19.3%.  相似文献   

4.
The magnetic properties and magnetoresistance effect of YMn6Sn6-x Crx(x=0-0.8) compounds have been experimentally studied by magnetic properties and resistivity measurements in the applied field range 0-5T.The compound (x=0.8) displays a ferromagnetic behaviour,while the compounds (x=0-0.4) display an antiferromagnetic behaviour in the whole ordering temperature range.The compounds(x=0.5,0.6) experienced a transition from an antiferromagnetic state to a ferromagnetic state with increasing temperature.The compound with x=0.8 is rapidly saturated in the lower magnetic field with saturation magnetization of 35.92emu/g.The compounds(x=0-0.6) display a field-induced metamagnetic transition,and the threshold fields decrease with increasing Cr content.The cell-volume V of compounds(x=0-0.8) increases,and the ordering temperature decreases with the increasing Cr content.A large magnetoresistance effect was observed for the compounds (x=0.4,0.5),and the maximum absolute value at 5K are 32% and 24% under 5T for x=0.4 and x=0.5,respectively.  相似文献   

5.
We report on the magnetic properties and magnetocaloric effects of Mn5Ge3-xGax compounds with x=0.1,0.2,0.3,0.4,0.6 and 0.9. All samples crystallize in the hexagonal Mn5Si3-type structure with space group P63/mcm and order ferromagnetically.The Curie temperature of these compounds decreases with increasing x, from 306K (x=0.1) to 274K (x=0.9).The average Mn magnetic moments increases with increasing Ga content,reaching a maximum value at x=0.6.The magnetic entropy changes in these compounds are determined from the temperature and field dependence of the magnetization using the thermodynamic Maxwell relation.The Ga substitution has two kinds of influence on the magnetocaloric effect (MCE) of Mn5Ge3.One is that the magnitude of the magnetic entropy change decreases,the other is that the MCE peak becomes broadened.  相似文献   

6.
A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn_2Ge_2. Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn_2Ge_2. Variations of external magnetic field and temperature give rise to the first-order or second-order magnetic transitions from one phase to another. Based on this model, the magnetic curves of GdMn_2Ge_2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained. Based on the calculation, the H-T magnetic phase diagrams of GdMn_2Ge_2 are depicted. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated. It is shown that, in order to describe the magnetic properties of GdMn_2Ge_2, the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.  相似文献   

7.
Magnetic and transport properties of Er_{1-x}Sm_xMn_6Ge_6(x=0.2-1.0) have been investigated by x-ray diffraction (XRD) and magnetization measurement. Analysis of the XRD patterns indicates that the samples with x≤0.4 mainly consist of HfFe_6Ge_6-type phase and the samples with 0.6≤x≤1.0 mainly consist of YCo_6Ge_6-type phase (P6/mmm). The lattice constants and the unit cell volume increase with increasing Sm content. The antiferro-ferri-ferromagnetic transitions can be observed with increasing Sm content. The samples with x=0.2 and 0.4 order antiferromagnetically at 420 and 425K, respectively. The samples with x=0.6, 0.8 and 1.0 order from ferri- to ferromagnetically over the whole magnetic ordering temperature range. The corresponding Curie temperatures are 435, 441 and 446K, respectively. The magnetoresistance (MR) isotherms of the sample with x=0.8, measured at various temperatures, are analysed. The magnitude of MR is found to be positive below 55K and gradually increases to a relatively large value of about 5.02% at 5K in a field of 5T as the temperature is lowered. A possible explanation for the positive MR is given.  相似文献   

8.
Magnetic entropy change (△S M) and refrigerant capacity (RC) of Ce 6 Ni 2 Si 3-type Gd 6 Co 1.67 Si 2.5 Ge 0.5 compounds have been investigated.The Gd 6 Co 1.67 Si 2.5 Ge 0.5 undergoes a reversible second-order phase transition at the Curie temperature T C=296 K.The high saturation magnetization leads to a large △S M and the maximal value of △S M is found to be 5.9 J/kg · K around T C for a field change of 0-5 T.A broad distribution of the △S M peak is observed and the full width at half maximum of the △S M peak is about 101 K under a magnetic field of 5 T.The large RC is found around T C and its value is 424 J/kg.  相似文献   

9.
The magnetism and magnetocaloric effect in Er1-xGdxCoAl(x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The Er1-xGdxCoAl compounds were synthesized by arc melting. With the increasing Gd content, the N′eel temperature(T N)linearly increases from 14 K to 102 K, while the magnetic entropy change(-?S M) tends to decrease nonmonotonously.Under the field change from 0 T to 5 T, the-?S M of the compounds with x = 0.2–1 are stable around 10 J/kg·K, then a cooling platform between 20 K and 100 K can be formed by combining these compounds. For x = 0.6, 0.8, 1.0, the compounds undergo two successive magnetic transitions, one antiferromagnetism to ferromagnetism and the other ferromagnetism to paramagnetism, with increasing temperature. The two continuous magnetic transitions in this series are advantageous to broaden the temperature span of half-peak width(δT) in the-?S M–T curve and improve the refrigeration capacity.  相似文献   

10.
We present the magnetoresistance measurements of ultrathin Mn5Ge3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between MnsGe3 and Ge (111), the thickness of MnsGe3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn5 Ge3 films appears a peak at about 6 kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn5 Ge3 film is a potential material for spin injection.  相似文献   

11.
张栋杰 《中国物理快报》2003,20(10):1852-1854
The grain-oriented CxGo1-z (x = 0.9, 0.5) samples were fabricated by the hot.pressing method. The microstruc-ture was observed by an x-ray diffractometer and a scanning electron microscope. The resistance against the applied magnetic field was measured by a standard four-polnt probe method at different temperatures. The magnetoresistance and the magnetization ratio were studied as a function of magnetic field in the range of -1800 kA/m-1800 kA /m at different temperatures from 50 K to 300 K. The magnetoresistance of grain-oriented GxGo1-x is positive. The maximum positive MR of 98% at 50 K and 34% at 300 K was obtained under 1800 kA/m magnetic field in the C0.9Go0.1 sample.  相似文献   

12.
Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relationships, and magnetic prop- erties of several 5:4 compounds, including Nd5 Si4-xGex, Pr5 Si4_xGex, Gds-xLaxGe4, La5 Si4, and Gd5 Sn4, are presented. In particular, the canted spin structures as well as the magnetic phase transitions in PrsSi2Ge2 and PrsGe4 investigated by neutron powder diffractions and small-angle neutron scattering are reviewed. Second, the crystal structures and magnetic properties of the most studied compounds Gds(Si,Ge)4 are summarized. The focus is on the parent compound GdsGe4, which is an amazing material exhibiting magnetic anisotropy, angular dependent spin-flop transition, metastable magnetic response, Griffiths-like phase, thermal effect under pulsed fields, antiferromagnetic and ferromagnetic resonances, pro- nounced effects of impurities, and high-field induced magnetic transitions.  相似文献   

13.
吴坚  张世远 《中国物理》2003,12(7):792-795
A series of (La_{1-x}Tb_x)_{2/3}Sr_{1/3}MnO_3 polycrystalline samples has been studied by means of x-ray diffraction, magnetostriction, and thermal expansion measurements. It has been found that this series undergoes a phase transition from a rhombohedral to an orthorhombic form at the doping level x≈0.20 at room temperature accompanied by an anisotropic magnetostriction up to -50×10^{-6} under a magnetic field of 1T. The linear and volume magnetostrictions vary with chemical composition, even change sign. At T=80K, the magnetostrictions for the samples of x=0.20 and 0.40 exhibit different behaviours. The sample of x=0.20 has positive volume and linear magnetostrictions and a negative anisotropic magnetostriction, while the sample of x=0.40 has an opposite behaviour. The magnitude of volume magnetostriction for both the samples is essential (~10^{-4}) at T=80K under a magnetic field of 4T. We conclude that these anomalous effects are due to the charge delocalization and the structural phase transition between orthorhombic and rhombohedral forms induced by the applied magnetic field.  相似文献   

14.
The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and undergo a second order transition from spin glass(SG) state to paramagnetic(PM) state. The spin glass transition temperatures T_g decrease from 26 K for x = 0 to 13 K for x = 0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie–Weiss law. The paramagnetic Curie temperatures(θp) for Ho_5 Pd_2,(Ho_(0.75) Y_(0.25)_5 Pd_2, and(Ho_(0.5) Y_(0.5))_5 Pd_2 are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments(μeff) are10.8 μB/Ho, 10.3 μB/RE, and 7.5 μB/RE, respectively. Magnetocaloric effect(MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0–5 T, the maximum values of the isothermal magnetic entropy change-?SMof the(Ho_(1-x)Y_x)_5 Pd_2(x = 0, 0.25, and 0.5) compounds are determined to be 11.5 J·kg~(-1)·K~(-1), 11.1 J·kg~(-1)·K~(-1), and 8.9 K J·kg~(-1)·K~(-1), with corresponding refrigerant capacity values of 382.3 J·kg~(-1), 336.2 J·kg~(-1), and 242.5 J·kg~(-1), respectively.  相似文献   

15.
Structure, magnetic and transport properties of YMn6Sn6-xGax (0≤x≤0.6) compounds with a HfFe6Ge6-type structure were investigated. It was found that the Ga substitution leads to a contraction of the unit-cell volume. A transition from an antiferromagnetic to a ferromagnetic (or ferrimagnetic) state can be observed for samples (0.1≤x≤0.2) with increasing temperature. The antiferro-ferromagnetic transition for samples with x≤0.2 can also be induced by an external field. The required field is very low, and decreases with increasing Ga concentration. More Ga concentration (x≥0.3) leads to the samples being ferromagnetic in the whole temperature range below the Curie temperature. The Ga substitution weakens the interlayer magnetic coupling between the Mn spins. Corresponding to the metamagnetic transition, a magnetoresistance as large as 32% under a field of 5 T was observed at 5 K for the sample with x=0.2.  相似文献   

16.
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fel-xCox)11.9Si1.1 (x=0.04, 0.06, and 0.08) with Curie temperatures of 243 K, 274 K, and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below Tc, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above Tc. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above Tc, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.  相似文献   

17.
A series of CeMn2(Si1-xGex)2(x = 0.2, 0.4, 0.6, 0.8) compounds are prepared by the arc-melting method. All the samples primarily crystallize in the Th Cr2Si2-type structure. The temperature dependences of zero-field-cooled(ZFC) and FC magnetization measurements show a transition from antiferromagnetic(AFM) state to ferromagnetic(FM) state at room temperature with the increase of the Ge concentration. For x = 0.4, the sample exhibits two kinds of phase transitions with increasing temperature: from AFM to FM and from FM to paramagnetic(PM) at around TN~197 K and T C~300 K,respectively. The corresponding Arrott curves indicate that the AFM–FM transition is of first-order character and the FM–PM transition is of second-order character. Meanwhile, the coexistence of positive and negative magnetic entropy changes can be observed, which are corresponding to the AFM–FM and FM–PM transitions, respectively.  相似文献   

18.
The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RT X compounds. Particularly, some RT X compounds such as Er Fe Si,Ho Cu Si, Ho Cu Al exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range.  相似文献   

19.
Effects of Ga substitution for Sn on the structure and magnetic properties of TbMn6Sn6-xGax (x=0.0-1.2) compounds have been investigated by means of x-ray diffraction, magnetization measurement and 119Sn M?ssbauer spectroscopy. The substitution of Ga for Sn results in a decrease in lattice constants and unit-cell volumes. The magnetic ordering temperature decreases monotonically with increasing Ga content from 423 K for x=0.0 to 390 K for x=1.2. At room temperature, the easy magnetization direction changes from the c-axis to the ab-plane. This variation implies that the substitution of Ga for Sn leads to a decrease in the c-axis anisotropy of the Tb sublattice. An increase in the non-magnetic Ga concentration results in a monotonic decrease of the spontaneous magnetization Ms at room temperature. Since there are three non-equivalent Sn sites, 2c (0.33, 0.67,0), 2d (0.33, 0.67,0.5) and 2e (0,0,0.34) in the TbMn6Sn6-xGax compounds, the 119Sn M?ssbauer spectra of the TbMn6Sn6 and TbMn6Sn5.4Ga0.6 compounds can be fitted by three sextets. The hyperfine fields (HFs) decrease in the order of HF(2d)>HF(2e)>HF(2c), which is in agreement with the magnetic structure.  相似文献   

20.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号