首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Discussions of risks and implications of cutaneous exposure to indoor lighting, including hypothetical contribution to causality of melanoma, have mainly concentrated on ultraviolet (UV) A and B (UVA, UVB) spectral emissions from fluorescent bulbs. Only studies of quartz halogen lamps have suggested that users might sustain UVC‐induced injury. Examination of light sources in the home and school of a child with xeroderma pigmentosum revealed that several different types emitted surprising levels of UV. Our purpose was to assess the extent of UV emissions from a variety of commonly used light sources to identify potential dermatological risks. UV and visible spectral emissions of commercially obtained lamps of several types were measured using a calibrated spectral radiometer traceable to the National Institute of Standards and Technology. Indoor light sources including fluorescent, quartz halogen and even tungsten filament incandescent lamps provided UVA, UVB and sometimes UVC emissions. Intensities of some emissions were of similar magnitude to those in sunlight. Chronic exposure to indoor lighting may deliver unexpected cumulative UV exposure to the skin and eyes. Patients with UV‐exacerbated dermatoses should be cautioned about potential adverse reactions from indoor lighting.  相似文献   

2.
The mutational spectra at the lacZ gene, induced either by vacuum UV at 160 nm or UVC at 254 nm in vacuum-dried preparations of Escherichia coli plasmid pUC19 DNA, have been characterized from 72 E. coli-propagated mutants by DNA sequencing. In plasmids irradiated in vacuum, vacuum UV is five times more mutagenic than UVC. In the UV-induced mutants, base substitutions largely predominate, with GC → AT (G, guanine; C, cytosine; A, adenine; T, thymine) transitions being the most abundant type of base change for vacuum UV (61%) and UVC (47%). Most of the GC → AT transitions appear to occur at dipyrimidine sites, which are located at the non-transcribed DNA strand. Some, but not all, hot spots for GC → AT transitions are identical for vacuum UV and UVC. Frameshifts, resulting from a loss of the thymine residue, are specific for UVC (22%), and were not detected after treatent with vacuum UV. They occur predominantly at thymine runs of the transcribed DNA strand. Only a few deletions were detected following irradiation with vacuum UV (7.5%) and UVC (2%); however, their frequency is not enhanced compared with the spontaneous mutation spectrum. The data confirm the important role of base substitution mutations in UV-induced mutagenesis, which is not only valid for the UVC range, but extends towards the vacuum UV range.  相似文献   

3.
Abstract— We have previously demonstrated the ability of UVC (254 nm) radiation to induce asynchronous polyoma replication in rat fibroblast cells (H3 line) that contain an integrated copy of polyoma virus. In the present study we show that general purpose lamps can induce polyoma replication in these cells as well. The amount of UV radiation emitted by three different light sources was determined and the effects of each source on the replication of polyoma DNA was assessed. Our findings indicate that a 100 W incandescent lamp had a minimal effect on replication, whereas a 90 s exposure to a halogen lamp or a 160 W mercury vapor lamp induced replication 1.5-fold and 2-fold, respectively, in comparison with nontreated controls. We have previously shown that asynchronous polyoma replication in H3 cells involves UV-inducible cellular protein factors. Our present results indicate that these factors are also activated by exposure to commonly used lamps that emit comparable doses of UV radiation.  相似文献   

4.
Germicidal lamps that emit primarily 254 nm ultraviolet radiation (UV) are routinely utilized for surface sterilization but cannot be used for human skin because they cause genotoxicity. As an alternative, 222-nm UVC has been reported to exert sterilizing ability comparable to that of 254-nm UVC without producing cyclobutane pyrimidine dimers (CPDs), the major DNA lesions caused by UV. However, there has been no clear evidence for safety in chronic exposure to skin, particularly with respect to carcinogenesis. We therefore investigated the long-term effects of 222-nm UVC on skin using a highly photocarcinogenic phenotype mice that lack xeroderma pigmentosum complementation group A (Xpa-) gene, which is involved in repairing of CPDs. CPDs formation was recognized only uppermost layer of epidermis even with high dose of 222-nm UVC exposure. No tumors were observed in Xpa-knockout mice and wild-type mice by repetitive irradiation with 222-nm UVC, using a protocol which had shown to produce tumor in Xpa-knockout mice irradiated with broad-band UVB. Furthermore, erythema and ear swelling were not observed in both genotype mice following 222-nm UVC exposure. Our data suggest that 222-nm UVC lamps can be safely used for sterilizing human skin as far as the perspective of skin cancer development.  相似文献   

5.
Abstract. Irradiation of Dulbecco's modified Eagle's tissue culture medium with "Daylight,""Special Blue," or "Bilirubin" fluorescent light produces photoproducts lethal to human cells. Killing is abolished when (1) riboflavin, (2) tryptophan and tyrosine, or (3) riboflavin, tryptophan and tyrosine are deleted from medium prior to irradiation with any of the above fluorescent lamps. Toxic photoproducts are also formed when buffered salt solutions containing (a) riboflavin and tryptophan, (b) riboflavin and tyrosine, or (c) riboflavin, tryptophan and tyrosine are exposed to any of these light sources.  相似文献   

6.
Abstract
Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8MOP) with UV-A or visible light were studied in the haploid strain XV185–14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and horn+ reverse mutations was measured in strain XV185–14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185–14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185–14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.  相似文献   

7.
Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.  相似文献   

8.
Abstract —Chinese hamster V79 cells were irradiated with 254 nm (UV-C) and 308 nm (UV-B) light, emitted by a germicidal lamp and an excimer laser, respectively. Induction of mutations at two distinct genetic loci was measured by selecting colonies resistant to 6-thioguanine or to ouabain. Unlike 6-thioguanine resistance which can be presumed to be due to many different types of genetic damage, mutation to ouabain resistance seems to result from base-pair substitution events only. Much higher doses of 308 than of 254 nm radiation are required to induce equivalent numbers of mutants. However, induction of cell inactivation and 6-thioguanine resistant mutations with the two UV sources appears to be correlated, suggesting that a common mechanism, perhaps involving the induction of pyrimidine-containing dimers, is involved. The frequency of ouabain resistant mutants per lethal event is on the other hand much higher after irradiation with the 308 nm light. This latter finding further defines a part of the UV-B spectral region which seems to induce a unique kind of DNA damage which specifically results in base-pair substitution events. Action spectra studies therefore appear necessary in the definition of the mutagenic effects of UV-B radiations in mammalian cells.  相似文献   

9.
Abstract— Ultraviolet B radiation (wavelength 290–310 nm) does not induce any specific lethal effects in the fungus Phy-comyces blakesleeanus , according to a heterokaryon test that responds to the nature of the lethal damage. This agent is about 10 times less lethal than UVC radiation from germicidal lamps (254 nm), but it kills cells through the same photoreactivable lesions, due to the UV absorption of DNA. Carotenes do not protect Phycomyces against UV damage, either B or C, lethal or not. This was shown by Darwinian competition experiments between strains containing very different carotene concentrations and between strains containing similar concentrations of different carotenes (phytoene, lycopene, β-car-otene). A shading effect of carotenes against UV radiation is likely, but it was insignificant under the conditions of the experiments.  相似文献   

10.
The correlation between the biologically effective dose (BED) of a phage T7 biological dosimeter and the induction of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts ((6-4)PD) in the phage DNA was determined using seven various UV sources. The BED is the inactivation rate of phage T7 expressed in HT7 units. The CPD and (6-4)PD were determined by lesion-specific monoclonal antibodies in an immunodot-blot assay. The various lamps induced these lesions at different rates; the relative induction ratios of CPD to (6-4)PD increased with increasing effective wavelength of irradiation source. The amount of total adducts per phage was compared to the BED of phage T7 dosimeter, representing the average number of UV lesions in phage. For UVC (200–280nm radiation) and unfiltered TL01 the number of total adducts approximates the reading; however, UV sources having longer effective wavelengths produced fewer CPD and (6-4)PD. A possible explanation is that although the most relevant lesions by UVC are the CPD and (6-4)PD, at longer wavelengths other photoproducts can contribute to the lethal damage of phages. The results emphasize the need to study the biological effects of solar radiation because the lesions responsible for the lethal effect may be different from those produced by various UV sources.  相似文献   

11.
Fluorescent sunlamps are commonly employed as convenient sources in photobiology experiments. The ability of Kodacel to filter photobiologically irrelevant UVC wavelengths has been described. Yet there still remains a major unaddressed issue--the over representation of UVB in the output. The shortest terrestrial solar wavelengths reaching the surface are approximately 295 nm with the 295-320 nm range comprising approximately 4% of the solar UV irradiance. In Kodacel-filtered sunlamps, 47% of the UV output falls in this range. Consequently, in studies designed to understand skin photobiology after solar exposure, the use of these unfiltered sunlamps may result in misleading, or even incorrect conclusions. To demonstrate the importance of using an accurate representation of the UV portion of sunlight, the ability of different ultraviolet radiation (UVR) sources to induce the expression of a reporter gene was assayed. Unfiltered fluorescent sunlamps (FS lamps) induce optimal chloramphenicol acetyltransferase (CAT) activity at apparently low doses (10-20 J/cm2). Filtering the FS lamps with Kodacel raised the delivered dose for optimal CAT activity to 50-60 mJ/cm2. With the more solar-like UVA-340 lamps somewhat lower levels of CAT activities were induced even though the apparent delivered doses were significantly greater than for either the FS or Kodacel-filtered sunlamp (KFS lamps). When DNA from parallel-treated cells was analyzed for photoproduct formation by a radioimmuneassay, it was shown that the induction of CAT activity correlated with the level of induced photoproduct formation regardless of the source employed.  相似文献   

12.
Abstract— Bacteriophages T2 or T4 containing 5-iodouracil (IUra) substituted for thymine in their DNA are inactivated by near-visible light, with fluorescent lamps as the source of near-visible light. Inactivation increases with the dose of near-visible light and follows first order kinetics. Relative inactivation rates are linearly proportional to percent substitution. Equivalent per cent substitution by IUra or 5-iodo-2'-deoxyuridine (IdUrd) results in equivalent sensitization to inactivation with both T2 and T4. However, incorporation of IUra into T4 and T2 also is lethal in the absence of light. The lethal effect of IUra substitution differs from the lethal effect of IUra substitution plus near-visible light irradiation in at least three respects: (1) IUra substitution is lethal for T4 under conditions where the residual viability is stable and where environmental light cannot account for the inactivation. (2) The hit curve for IUra lethality, as a function of per cent IUra substitution, has a large shoulder while the hit curve for sensitization to inactivation by near-visible light, as a function of per cent IUra substitution, has no shoulder. (3) At equivalent extents of inactivation. IdUrd substitution in the absence of light has a greater effect on phenotypic expression of T4 than either near-visible light irradiation alone or IUra substitution plus near-visible light irradiation, as measured by either delay in appearance or decrease in total amount of two induced enzyme activities (dihydrofolate reductase and deoxycytidylate hydroxymethylase).  相似文献   

13.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

14.
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta‐analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3′ pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non‐UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight‐related skin neoplasms may vary between continents.  相似文献   

15.
Abstract The cytotoxic and mutagenic effects of chloroaluminum phthalocyanine (CAPC) plus red light have been measured in strains of L5178Y mouse lymphoma cells which differ in their DNA repair capacities. Strain LY-R, deficient in the excision repair of UV-induced dimers, was found to be relatively more sensitive to the cytotoxic effects of CAPC plus light, whereas strain LY-S, deficienl in the repair of DNA double-strand breaks, was more sensitive than strain LY-R to the mutagenic effects of the treatment. Mutation frequencies were measured in LY-S and LY-R sub-strains which were heterozygous or hemizygous at the thymidine kinase (tk) locus. The mutation frequency at the tk locus induced in the heterozygous strain LY-SI by CAPC plus light was lower than that induced by an equitoxic dose of ionizing radiation but similar to that induced by an equitoxic dose of UVC radiation: The mutation frequency at the F., dose of CAPC plus light was approximately 1100 per 106 surviving cells. The induced frequency in strain LY-S1 was much higher than in either tk+l-heterozygous or ik+10 hemizygous strains of LY-R. The rate and extent of incorporation of CAPC by the LY-R strains was somewhat greater than for strain LY-S1 at early times after CAPC addition, but by the time the cells were irradiated (18 h after CAPC addition) the difference was not great enough to account for the difference in cytotoxicity. It is possible that the cytotoxic and mutagenic lesions differ and that either the quantities of the respective lesions induced or the efficiencies of repair of the respective lesions differ inversely in the two strains. light have been measured in strains of L5178Y mouse lymphoma cells which differ in their DNA repair capacities. Strain LY-R, deficient in the excision repair of UV-induced dimers, was found to be relatively more sensitive to the cytotoxic effects of CAPC plus light, whereas strain LY-S, deficienl in the repair of DNA double-strand breaks, was more sensitive than strain LY-R to the mutagenic effects of the treatment. Mutation frequencies were measured in LY-S and LY-R sub-strains which were heterozygous or hemizygous at the thymidine kinase (tk) locus. The mutation frequency at the tk locus induced in the heterozygous strain LY-SI by CAPC plus light was lower than that induced by an equitoxic dose of ionizing radiation but similar to that induced by an equitoxic dose of UVC radiation: The mutation frequency at the F., dose of CAPC plus light was approximately 1100 per 106 surviving cells. The induced frequency in strain LY-S1 was much higher than in either tk+l-heterozygous or ik+10 hemizygous strains of LY-R. The rate and extent of incorporation of CAPC by the LY-R strains was somewhat greater than for strain LY-S1 at early times after CAPC addition, but by the time the cells were irradiated (18 h after CAPC addition) the difference was not great enough to account for the difference in cytotoxicity. It is possible that the cytotoxic and mutagenic lesions differ and that either the quantities of the respective lesions induced or the efficiencies of repair of the respective lesions differ inversely in the two strains.  相似文献   

16.
Abstract— The induction of mutations (reversion to tryptophan independence) by various UV (254, 313, 334 and 365 nm) and visible (405 and 434 nm) wavelengths was measured in exponential phase populations of Escherichia coli B/r thy trp and B/r thy trp uvrA by assay of irradiated populations on semi-enriched media. No mutations were induced in the repair proficient strain at wavelengths longer than 313 nm. Mutations were induced in the excisionless strain at wavelengths as long as 405 nm but less than expected from the known amount of DNA damage induced. Irradiation at the longer wavelengths (434, 405, 365 and 334 nm) suppressed the appearance of 254- or 313-nm-induced mutations in the repair competent strain but not in the excision deficient strain. The relative dose-requirement for mutation suppression was related to the relative efficiency of these wavelengths in inducing growth delay. These results suggest that the growth delay induced by near-UV and visible wavelengths allows more time for the 'error-free" excision repair process to act on the potentially mutagenic lesions induced by 254- and 313-nm radiations, thereby reducing the mutation frequency observed in the repair-proficient strain. The level of near-UV mutation induced in the excision deficient strain is lower than expected from the DNA damage known to be induced. It is possible that near-UV radiation induces a class of lethal lesions that are not susceptible to error-prone repair.  相似文献   

17.
Abstract— Mutagenesis by UV light or psoralen-plus-light was measured by increases in the reversion of nonsense mutants of phage T4. In the presence of either of two gene 43 antimutator polymerase alleles, ts CB120 or ts CB87, UV-induced reversion was inhibited. Likewise psoralen-plus-light mutagenesis was inhibited when the ts CB120 allele was present. These results imply that the gene 43 DNA polymerase has a role in the formation of mutations from the DNA lesions induced by UV and psoralen-plus-light.  相似文献   

18.
釆用高温固相法制备了NaCaPO4∶Dy3+系列样品, 并在紫外(UV)及真空紫外(VUV)区域研究了系列样品的发光性能. 紫外激发光谱显示在350 nm处有最强的激发峰, 可以有效地吸收紫外光并将其转化为可见光. 真空紫外激发光谱表明, NaCaPO4∶Dy3+能有效地吸收无汞荧光灯的激发源并将其转化为可见光. 系列样品发光均呈现为白色, 这种材料有潜力作为全色显示材料应用于发光二极管(LED)和无汞荧光灯中.  相似文献   

19.
釆用高温固相法制备了NaCaPO4∶Dy3+系列样品,并在紫外(UV)及真空紫外(VUV)区域研究了系列样品的发光性能.紫外激发光谱显示在350nm处有最强的激发峰,可以有效地吸收紫外光并将其转化为可见光.真空紫外激发光谱表明,NaCaPO4∶Dy3+能有效地吸收无汞荧光灯的激发源并将其转化为可见光.系列样品发光均呈现为白色,这种材料有潜力作为全色显示材料应用于发光二极管(LED)和无汞荧光灯中.  相似文献   

20.
绿色荧光蛋白   总被引:4,自引:0,他引:4  
绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光.由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领域.本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号