首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.  相似文献   

2.
Surfactants carrying fluorocarbon chains hold great promise as gentle alternatives to conventional hydrocarbon‐based detergents for the solubilization and handling of integral membrane proteins. However, their inertness towards lipid bilayer membranes has limited the usefulness of fluorinated surfactants in situations where detergent‐like activity is required. We demonstrate that fluorination does not necessarily preclude detergency, as exemplified by a fluorinated octyl maltoside derivative termed F6OM. This nonionic compound readily interacts with and completely solubilizes phospholipid vesicles in a manner reminiscent of conventional detergents without, however, compromising membrane order at subsolubilizing concentrations. Owing to this mild and unusual mode of detergency, F6OM outperforms a lipophobic fluorinated surfactant in chaperoning the functional refolding of an integral membrane enzyme by promoting bilayer insertion in the absence of micelles.  相似文献   

3.
The interaction of cationic surfactant cetylpyridinium chloride, CPC, with giant lipid vesicles prepared from 1-palmitoyl-2-oleoylphosphatidylcholine, POPC, was examined at various concentrations of the lipid component. The lipid concentration was determined by a spectrophotometric method. The potentiometric method based on surfactant-selective electrode was used for the determination of surfactant concentration in the external water solution. From these results, moles of surfactant incorporated in the membrane per mole of lipid (parameter beta) and two kinds of partition coefficients were calculated. Their values were found to be considerably larger than the available literature data. A three stage process of surfactant-induced solubilization of lipid vesicles was observed. First, stable mixed bilayers form, which become saturated with CPC at a value beta(sat) larger than 0.8, which then gradually disintegrate. Just prior to the breakdown of the vesicular structure, formation of ellipsoidal vesicles was observed by optical microscopy. This phenomenon was attributed to the cooperative incorporation of surfactant into the bilayer. Fluorescence measurements have shown that the second stage in the solubilization process of POPC by the C16 chain-length surfactant does not involve mixed micelles. These are formed only in the third stage, which is the complete solubilization of POPC bilayers. The corresponding critical micellization concentration decreases with increasing concentration of the lipid component.  相似文献   

4.
Simulations based on dissipative particle dynamics are performed to investigate the solubilization mechanism of vesicles by surfactants. Surfactants tend to partition themselves between vesicle and the bulk solution. It is found that only surfactants with suitable hydrophobicity are able to solubilize vesicles by forming small mixed micelles. Surfactants with inadequate hydrophobicity tend to stay in the bulk solution and only a few of them enter into the vesicle. Consequently, the vesicle structure remains intact for all surfactant concentrations studied. On the contrary, surfactants with excessive hydrophobicity are inclined to incorporate with the vesicle and thus the vesicle size continues to grow as the surfactant concentration increases. Instead of forming discrete mixed micelles, lipid and surfactant are associated into large aggregates taking the shapes of cylinders, donuts, bilayers, etc. For addition of surfactant with moderate hydrophobicity, perforated vesicles are observed before the formation of mixed micelles and thus the solubilization mechanism is more intricate than the well-known three-stage hypothesis. As the apparent critical micellar concentration (φ(s,v)(a,CMC)) is attained, pure surfactant micelles form and the vesicle deforms because the distribution of surfactant within the bilayer is no longer uniform. When the surfactant concentration reaches φ(s,v)(p), the vesicle perforates. The extent of perforation grows with increasing surfactant concentration. The solubilization process begins at φ(s,v) (sol), and lipids leave the vesicle and join surfactant micelles to form mixed micelles. Eventually, total collapse of the vesicle is observed. In general, one has φ(s,v)(a,CMC)≤φ(s,v)(p)≤φ(s,v)(sol).  相似文献   

5.
Shao C  Kendall EL  Devoe DL 《Lab on a chip》2012,12(17):3142-3149
Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.  相似文献   

6.
Detergents are very useful for the purification of membrane proteins. A good detergent for protein extraction has to prevent denaturation by unfolding, and to avoid aggregation. Therefore, gaining access to the mechanism of biomembranes’ solubilization by detergents is crucial in biochemical research. Among the wide range of detergents used to purify membrane proteins, n-octyl β-d-glucopyranoside (OG) is one of the most important as it can be easily removed from final protein extracts.

Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of OG. Two kinds of supported model membranes were prepared by fusion of unilamellar vesicles: with an equimolar mixing of dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) or with DPPC alone. Time-lapse AFM experiments evidenced that below its critical micelle concentration (CMC), OG was not able to solubilize the bilayer but the gel DPPC domains were instantly dissolved into the DOPC matrix. This result was interpreted as a disorganization of the DPPC molecular packing induced by OG. When membranes were incubated with OG at concentrations higher than CMC, the detergent immediately provoked the complete and immediate desorption of the whole bilayer for both compositions: DPPC and DOPC/DPPC. After a while, some patches appeared onto the bare mica surface. This redeposition activity, together with fusion events, progressively led to the recovery of a continuous bilayer. These results provide a new insight on the unique properties of OG employed in membrane reconstitution protocols.  相似文献   


7.
The effect of ionic strength, solute size, and osmolarity of the suspending solution on surfactant-induced erythrocyte hemolysis was studied. Two possible mechanisms of hemolysis were considered: osmotic lysis (affected by solute particle size) and solubilization (not affected by solute particle size). It was found that the ionic strength of the solution has a major effect on the hemolysis process, depending on the surfactant nature and concentration. An increase in the ionic strength lowers the rate of hemolysis induced by DTAB, and enhances SDS-induced hemolysis. Changes in ionic strength have little effect on hemolysis induced by Triton X-100. To explain these effects, it was assumed that the changes in ionic strength differently affect the adsorption of cationic and anionic surfactants to the membrane. The change in the amount of adsorbed surfactant either influences the rate of osmotic hemolysis by changing the membrane permeability or induces a transition from the osmotic mechanism to solubilization. These phenomena were observed for isotonic as well as hypertonic solutions.  相似文献   

8.
The size-dependent behavior of small unilamellar vesicles is explored by dissipative particle dynamics, including the membrane characteristics and mechanical properties. The spontaneously formed vesicles are in the metastable state and the vesicle size is controlled by the concentration of model lipids. As the vesicle size decreases, the bilayer gets thinner and the area density of heads declines. Nonetheless, the area density in the inner leaflet is higher than that in the outer. The packing parameters are calculated for both leaflets. The result indicates that the shape of lipid in the outer leaflet is like a truncated cone but that in the inner leaflet resembles an inverted truncated cone. Based on a local order parameter, our simulations indication that the orientation order of lipid molecules decreases as the size of the vesicle reduces and this fact reveals that the bilayer becoming thinner for smaller vesicle is mainly attributed to the orientation disorder of the lipids. The membrane tension can be obtained through the Young-Laplace equation. The tension is found to grow with reducing vesicle size. Therefore, small vesicles are less stable against fusion. Using the inflation method, the area stretching and bending moduli can be determined and those moduli are found to grow with reducing size. Nonetheless, a general equation with a single numerical constant can relate bending modulus, area stretching modulus, and bilayer thickness irrespective of the vesicle size. Finally, a simple metastable model is proposed to explain the size-dependent behavior of bilayer thickness, orientation, and tension.  相似文献   

9.
The recent studies on the interaction of surfactants and fatty acids with lipids are inspired by the want of knowledge from several research fields of highest activity: identification of membrane rafts; membrane protein crystallization; formation of non-lamellar phases in membranes; membrane fusion. Detailed phase diagrams for lipid–surfactant and lipid–fatty acid mixtures, obtained in the last few years, reveal complicated mesomorphic and polymorphic behavior, including miscibility gaps and compound formation. Surfactant-induced non-lamellar to lamellar transitions in lipids and specific temperature-driven bilayer–micelle transitions represent extensions of the general three-stage model of membrane solubilization. Further research is required to construct phase diagrams as to delineate the principles of lipid–surfactant and lipid–fatty acid interactions for the variety of membrane lipid classes.  相似文献   

10.
The surface-active drugs chlorpromazine (CPZ) and imipramine (IP) have been tested on large unilamellar vesicles composed of phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (Ch) in different proportions. The well-characterized nonionic detergent Triton X-100 (TX) has also been used in parallel experiments. Leakage of vesicular aqueous contents and bilayer solubilization have been measured for each surfactant molecule and vesicle composition. All three surface-active molecules behave in a qualitatively similar way, irrespective of bilayer composition: they induce leakage at concentrations well below their critical micellar concentrations (cmc) and solubilization near the cmc. In these events, the potency of the three surfactants under study increases with decreasing cmc, in the order IP相似文献   

11.
Ionophore can prominently improve the ion permeability of cell membrane and disrupt cellular ion homeostasis.Most studies regarding ionophore facilitating ion transmembrane transport focus on artificial liquid-liquid interfaces,which have large difference from the actual environment of cell membrane.Here,we construct a supported lipid bilayeron a gold nanoparticles film modified ZnSe prism as an appropriate model of cell membrane to investigate the dynamic of the ion transport facilitated by ionophore using surface enhanced infrared absorption spectroscopy(SEIRAS).We find that the ion transmembrane transport consists of two steps:The ion transmembrane transport starts with the association/disassociation between ion and ionophore at the edge of lipid bilayer;The second step is the transfer of ion-ionophore complex across lipid bilayer.Our results show that the complex transfer across the lipid bilayer is the rate determining step.  相似文献   

12.
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components.

Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.  相似文献   

13.
The solubilization dynamics of dimyristoylphosphatidylcholine (DMPC) liposomes, as induced by sodium dodecyl sulfate (SDS), were investigated; this investigation was motivated by several types of atypical behavior that were observed in the solubilization in this system. The liposomes and surfactants were mixed in a microchip, and the solubilization reaction of each liposome was observed using a microscope. We found that solubilization occurred not only via a uniform dissolution of the liposome membrane, but also via a dissolution involving the rapid motion of the liposome, or via active emission of protrusions from the liposome surface. We statistically analyzed the distribution of these patterns and considered hypotheses accounting for the solubilization mechanism based on the results. When the SDS concentration was lower than the critical micelle concentration (CMC), the SDS monomers entered the liposome membrane, and mixed micelles were emitted. When the SDS concentration was higher than the CMC, the SDS micelles directly attacked the liposome membrane, and many SDS molecules were taken up; this caused instability, and atypical solubilization patterns were triggered. The size dependence of the solubilization patterns was also investigated. When the particle size was smaller, the SDS molecules were found to be homogeneously dispersed throughout the whole membrane, which dissolved uniformly. In contrast, when the particle size was larger, the density of SDS molecules increased locally, instability was induced, and atypical dissolution patterns were often observed.  相似文献   

14.
A novel solid-state NMR technique for identifying the asymmetric insertion depths of membrane proteins in lipid bilayers is introduced. By applying Mn (2+) ions on the outer but not the inner leaflet of lipid bilayers, the sidedness of protein residues in the lipid bilayer can be determined through paramagnetic relaxation enhancement (PRE) effects. Protein-free lipid membranes with one-side Mn (2+)-bound surfaces exhibit significant residual (31)P and lipid headgroup (13)C intensities, in contrast to two-side Mn (2+)-bound membranes, where lipid headgroup signals are mostly suppressed. Applying this method to a cell-penetrating peptide, penetratin, we found that at low peptide concentrations, penetratin is distributed in both leaflets of the bilayer, in contrast to the prediction of the electroporation model, which predicts that penetratin binds to only the outer lipid leaflet at low peptide concentrations to cause an electric field that drives subsequent peptide translocation. The invalidation of the electroporation model suggests an alternative mechanism for intracellular import of penetratin, which may involve guanidinium-phosphate complexation between the peptide and the lipids.  相似文献   

15.
Block copolymer vesicles are conveniently prepared directly in water at relatively high solids by polymerization-induced self-assembly using an aqueous dispersion polymerization formulation based on 2-hydroxypropyl methacrylate. However, dynamic light scattering studies clearly demonstrate that addition of small molecule surfactants to such linear copolymer vesicles disrupts the vesicular membrane. This causes rapid vesicle dissolution in the case of ionic surfactants, with nonionic surfactants proving somewhat less destructive. To address this problem, glycidyl methacrylate can be copolymerized with 2-hydroxypropyl methacrylate and the resulting epoxy-functional block copolymer vesicles are readily cross-linked in aqueous solution using cheap commercially available polymeric diamines. Such epoxy-amine chemistry confers exceptional surfactant tolerance on the cross-linked vesicles and also leads to a distinctive change in their morphology, as judged by transmission electron microscopy. Moreover, pendent unreacted amine groups confer cationic character on these cross-linked vesicles and offer further opportunities for functionalization.  相似文献   

16.
Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.  相似文献   

17.
We report on the investigations of the formation of the tethered lipid bilayer by vesicle deposition on amine-functionalized surfaces. The tethered bilayer was created by the deposition of egg-PC vesicles containing 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly-(ethyleneglycol)-N-hydroxysuccinimide as anchoring molecules on an amine-coated surface. This approach is an easy route for the formation of a biomimetic-supported membrane. A Doelhert experimental design was applied to determine the conditions leading to the formation of a continuous and defect-free tethered bilayer on different surfaces (gold and glass). Doehlert designs allow modeling of the experimental responses by second-order polynomial equations as a function of experimental factors. Four factors expected to influence bilayer formation were studied: the lipid concentration in the vesicle suspension, the mass percentage of anchoring molecules in the vesicles, the contact time between the vesicles and the surface, and the resting time of the membrane after buffer rinse. The optimization of the membrane preparation parameters was achieved by monitoring lipid assembly formation using surface plasmon resonance spectroscopy on gold and by fluorescence recovery after photobleaching on glass. Three characteristic responses were systematically measured: the bilayer thickness, the lipid diffusion coefficient, and the lipid mobile fraction. The simultaneous inspection of the three characteristics revealed that a restricted experimental domain leads to properties that are in accordance with a bilayer presence. The factors of this domain are a lipid concentration from 0.1 to 1 mg/mL, 4-8% of anchoring molecules in the vesicles, 1-4 h of contact time between vesicles and surface, and 21-24 h of resting time after buffer rinse. Under these conditions, a membrane having a lipid mass per surface between 545 +/- 5 and 590 +/- 10 ng/cm2, a diffusion coefficient of between 2.5 +/- 0.3 x 10(-8) and 3.60 +/- 0.5 x 10(-8) cm2/s, and a mobile fraction between 94 +/- 2 and 99 +/- 1% was formed. These findings were confirmed by atomic force microscopy observations, which showed the presence of a continuous and homogeneous bilayer in the determined experimental domain. This formation procedure presents many advantages; it provides an easily obtainable biomimetic membrane model for proteins studies and offers a versatile tethered bilayer because it can be adapted easily to various types of supports.  相似文献   

18.
Development of new generations of membranes with high degrees of permeabilities and controllable mass transport properties requires a fundamental understanding of the relationship between molecular structures and permeabilities. Initiation of interdisciplinary research in biology, biophysics, polymer and colloid chemistry is proposed to provide the insight to membrane transport processes at the molecular level. Mother nature's most talented transporter — the biological membrane — should inspire this endeavor. Following a survey of the properties of, and recognized transport mechanisms in, biomembranes, membrane-mimetic chemistry is introduced to serve as a bridge between biological and polymeric membranes. Surfactant aggregates — micelles, monolayers, organized multilayers (Langmuir—Blodgett films), bilayer lipid membranes (BLMs), vesicles and polymerized vesicles — are shown to be the media in membrane-mimetic chemistry. Properties of these organized surfactant assemblies are summarized. Emphasis is placed on the control of molecular transport in membrane-mimetic systems. Perspectives and prospectives of biomimetic membranology are discussed.  相似文献   

19.
Gemini surfactants possess interesting interfacial and aggregation properties that have prompted comprehensive studies and successful applications in a wide variety of fields. However, a systematic study on the effect of gemini tail and spacer length upon the organization of lipid membranes has not been presented so far. In this study, we analyze the action of dicationic alkylammonium bromide gemini surfactants on DPPC liposomes, the latter employed as a model of lipid membranes. Differential scanning calorimetry results indicate that the surfactants presenting shorter tails (12 carbons) induce a decrease in the overall order of the bilayer, while those with longer tails (16 and 18 carbons) lead to the formation of more ordered structures. The respective influence on the degree of lipid order transverse to the bilayer was additionally studied resorting to a detailed fluorescence anisotropy study. In this case, it is observed that among the shorter tail surfactants, those with longer spacers (6 and 10 carbons) are responsible for a more pronounced disrupting effect upon the membrane, especially close to the lipid polar heads. Molecular dynamics simulation supports the most important findings and provides insight into the mechanism that governs this interaction. Accordingly, the interplay between tail and spacer length accounts for the differential vertical positioning of the gemini molecules and atom-density in the core of the bilayer, that provide a rationale for the experimental observations.  相似文献   

20.
Aqueous miconazole (MCZ) aggregates were solubilized and/or colloidally stabilized by bilayer-forming synthetic amphiphiles such as dioctadecyldimethylammonium bromide (DODAB) or sodium dihexadecylphosphate (DHP) dispersions. Particle sizing, light absorption and scattering from drug particles, zeta-potential determination, and drug aggregation kinetics from turbidity changes in the presence or absence of lipid dispersions were obtained over a range of drug and lipid concentrations. The very low solubility of MCZ in water made possible the determination of size distributions for drug particles in water and comparison to those in the presence of DODAB or DHP nanosized bilayer fragments or entire and closed bilayer vesicles. Large drug aggregates disappeared upon incubation with nanosized bilayer fragments produced by ultrasonic dispersion with tip. Light-absorption spectra for MCZ in a poor solvent (water), in a good organic solvent (methanol), and in different lipid dispersions showed that solubilization depended on the presence of bilayer fragments. MCZ was poorly soluble in dispersions formed of closed bilayers (vesicles) of DODAB or DHP in the gel state and in phosphatidylcholine (PC) vesicles in the liquid-crystalline state. Increased hydrophobicity at the borders of bilayer fragments explained MCZ solubilization. At [MCZ]>0.4 mM, kinetics of drug aggregation, zeta-potential measurements, and size minimization were obtained upon addition of minute amounts of oppositely charged bilayer fragments ([DHP]=0.05 mM), making possible determination of a remarkable stabilizing effect of drug particles by coverage with anionic bilayer fragments. High drug colloid stability in the presence of charged bilayer fragments was achieved by two different means: (1). at large drug concentrations and small concentrations of bilayer fragments, coverage of large drug particles with bilayer fragments; (2). at large amounts of bilayer fragments, drug solubilization in its monomeric form at the borders of bilayer fragments. Inexpensive, synthetic bilayer fragments offered a large area of hydrophobic nanosurfaces dispersed and electrostatically stabilized in water, opening new prospects for drug solubilization and colloid stabilization of insoluble drug particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号