首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonpolar organic compounds (NPOCs) in ambient particulate matter (PM) commonly include n-alkanes, branched alkanes, hopanes and steranes, and polycyclic aromatic hydrocarbons (PAHs). The recent development of thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) has greatly reduced time and labor in their quantification by eliminating the laborious solvent extraction and sample concentration steps in the traditional approach that relies on solvent extraction. The simplicity of the TD-GCMS methods has afforded us concentration data of NPOCs in more than 90 aerosol samples in two aerosol field studies and 20 vehicular emissions-dominated source samples in Hong Kong over the past few years. In this work, we examine the interspecies relationships between select NPOCs and their concentration ratios to elemental carbon (EC) among the ambient samples and among the source samples. Our analysis indicates that hopanes were mainly from vehicular emissions and they were significantly oxidized in ambient PM. The hopane/EC ratio in ambient samples was on average less than half of the ratio in vehicular emissions-dominated source samples. This highlights the necessity in considering oxidation loss in applying organic tracer data in source apportionment studies. Select PAH/EC ratio–ratio plots reveal that PAHs had diverse sources and vehicular emissions were unlikely a dominant source for PAHs in Hong Kong. Biomass burning and other regional sources likely dominated ambient PAHs in Hong Kong.  相似文献   

2.
Direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS) is a technique that is finding application in the characterisation of the semivolatile organic carbon fraction of ambient and combustion source particulate matter (PM) collected on filters. In this study, three DTD-GC-MS methods were assessed and compared to a conventional solvent extraction method for analysis of a mixture of target analytes in solution and of diesel PM collected on quartz filters. The target analytes included n-alkanes, hopanes, steranes and polycyclic aromatic hydrocarbons. This study showed that while the three DTD-GC-MS methods were generally comparable to the solvent extraction method, (1) the choice of calibration strategy and calibration materials has a significant impact on the measured accuracy of a method; (2) very large variations were seen in all methods for the more volatile compounds such as C10 to C13 n-alkanes and naphthalene; (3) accuracy, defined as difference from the known concentration of a liquid sample, ranged from 5% to 32%; (4) precision, defined as the relative standard deviation, ranged from 4% to 16%. The average difference of DTD-GC-MS results from the solvent extraction results for the diesel PM filters ranged from 20% to 40%. This difference was driven by the large number of target analytes present at relatively low concentrations (<25 pg/mm2) and their corresponding higher variability. Differences in performance among the compound classes were noted. Minimum detection limits for the DTD-GC-MS methods were on the order of 0.1 to 1 pg/mm2 and were as good as or better than those obtained for the solvent extraction method.  相似文献   

3.
Semivolatile organic compounds (SVOC) associated with ambient particles smaller than 2.5 microm (PM2.5) were determined in the city of Augsburg, Germany. Daily samples were collected at a central monitoring station from late summer 2002 to spring 2005. SVOC were analysed by direct thermal desorption (DTD)-GC and comprehensive 2-D GC coupled to TOF MS (DTD-GC-TOF MS and DTD-GC x GC-TOF MS). Two hundred compounds were quantified and 'semi-quantified' on a daily basis by DTD-GC-TOF MS. n-Alkanes, n-alkan-2-ones, n-alkanoic acid methyl esters, acetic acid esters, n-alkanoic acid amides, nitriles, linear alkylbenzenes and 2-alkyl-toluenes, hopanes, PAH, alkylated PAH and oxidised PAH, and several compounds that are not-grouped in homologous rows or compound classes were determined. Changes in concentration and pattern of several target compounds as well as methodological advantages and restrictions of DTD-GC-TOF MS are briefly discussed. DTD-GC-TOF MS analysis provided data particularly suited for source receptor modelling and epidemiological time series studies on the health effects of ambient PM. GC x GC enhances chromatographic resolution of PM samples and therefore amplifies the peak identification capabilities of the TOF MS.  相似文献   

4.
A method is presented for the determination of acidic products from terpene oxidation in filter samples of the atmospheric particle phase. Oxidation products of monoterpenes are believed to add a large fraction to the secondary organic aerosol (SOA) in the troposphere. Those products with structures containing one or more carboxylic acid groups have especially low vapour pressures and therefore they are believed to contribute substantially to the particle phase. Although many experiments were performed in simulation chambers to study the SOA generation by oxidation of terpenes, concentration measurements of products in the atmospheric particle phase are still rare. This is especially true for oxidation products of terpenes other than α- and β-pinene. Therefore, we developed a method for the quantification of acidic products from terpene oxidation in atmospheric aerosol samples. After passing a PM 2.5 (PM = particulate matter) pre-separator to remove coarse particles, fine atmospheric particles were collected onto quartz fibre filters. A backup filter was placed behind the first filter to estimate possible sampling artifacts. The filters were extracted in an ultrasonic bath using methanol. After enrichment and re-dissolving in water the samples were analysed using a capillary-HPLC-ESI(−)-MSn set-up. The ion trap mass spectrometer could be used to gain structural information about the analytes and to enhance the selectivity of the measurements by using its MS/MS capability. A variety of products from different terpenes could be identified and quantified in samples of the ambient atmosphere using reference data from chamber experiments. Due to strong matrix effects quantification of samples from the real atmosphere had to be done by the standard addition method.  相似文献   

5.
Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) is becoming more commonly used for the quantification and identification of organic compounds in particulate matter (PM), including ambient and source PM such as diesel particulate matter (DPM). It has been proven as an alternative to the traditional solvent extraction (SE) method and liquid injection gas chromatograph mass spectrometry (LI-GC/MS). However, little information is available on how different types of TD-GC/MS systems compare to each other for analysis of real-world PM samples or to direct LI-GC/MS for analysis of PM components in a test solution. To address this, CanmetENERGY Characterization Laboratory initiated a round robin with the participation of 10 laboratories worldwide. Three sample types were analysed: (i) a test solution with a suite of pure compounds commonly found in PM, analysed by TD-GC/MS and LI-GC/MS; (ii) a DPM sample, analysed by TD-GC/MS and SE; and (iii) an ambient PM sample, analysed by TD-GC/MS. The first part of the study showed good overall performance and comparability between the different TD-GC/MS systems and LI-GC/MS method for the analysis of PM components in a test solution, with some variability of results due to system types and parameters used, concentration of calibration standards, and whether or not an internal standards was used. The analysis of the DPM sample showed greater variability between laboratories and methods as many PM components were present near the detection limit and matrix effects particularly affected the TD-GC/MS analysis of heavier n-alkanes. In the last part of the study, for the analysis of an ambient PM sample by TD-GC/MS, the analysis of variance showed good comparison between labs for polycyclic aromatic hydrocarbons (94% non-significant), but slightly lower for n-alkanes (68%) and biomarkers (57%).  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) from ambient air particulate matter (PM) were analysed by a two-step thermal desorption (TD) injection system integrated to a gas chromatograph–mass spectrometer (GC/MS). The operational variables of the TD method were optimised and the analytical expanded uncertainties were calculated to vary from 8% to 16% over the operative concentration range (40–4000 pg). The performance of the TD method was validated by the analysis of a standard reference material and by comparison of PAH concentrations in PM samples to those obtained by a conventional liquid extraction (LE) method. The TD method reported lower uncertainties than the LE method for the analysis of similar concentrations in air. The TD method also showed advantages for shorter sampling times in comparison to 24 h for source apportionment applications and for reducing losses of more reactive compounds such as benzo[a]pyrene.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAH) from ambient air particulate matter (PM) were analyzed by a new method that utilized direct immersion (DI) and cold fiber (CF) SPME-GC/MS. Experimental design was used to optimize the conditions of extraction by DI-CF-SPME with a 100μm polydimethylsiloxane (PDMS) fiber. The optimal conditions included a 5min equilibration at 70°C time in an ultrasonic bath with an extraction time of 60min. The optimized method was validated by the analysis of a NIST standard reference material (SRM), 1649b urban dust. The results obtained were in good agreement with certified values. PAH recoveries for reference materials were between 88 and 98%, with a relative standard deviation ranging from 5 to 17%. Detection limits (LOD) varied from 0.02 to 1.16ng and the quantification limits (LOQ) varied from 0.05 to 3.86ng. The optimized and validated method was applied to the determination of PAH from real particulate matter (PM10) and total suspended particulate (TPS) samples collected on quartz fiber filters with high volume samplers.  相似文献   

8.
Qinyue Sun 《Talanta》2009,78(3):1115-1121
Organic compounds in ambient particulate matter (PM) samples are used as tracers for PM source apportionment. These PM samples are collected using high volume samplers; one such sampler is an impactor in which polyurethane foam (PUF) and polypropylene foam (PPF) are used as the substrates. The polymer substrates have the advantage of limiting particle bounce artifacts during sampling; however these substrates may contain background organic additives. A protocol of two extractions with isopropanol followed by three extractions with dichloromethane (DCM) was developed for both substrate precleaning and analyte extraction. Some residual organic contaminants were present after precleaning; expressed as concentrations in a 24-h ambient PM sample, the residual amounts were 1 g m−3 for plasticizers and antioxidants, and 10 ng m−3 for n-alkanes with carbon number lower than 26. The quantification limit for all other organic tracer compounds was ≈0.1 ng m−3 in a 24-h ambient PM sample. Recovery experiments were done using NIST Standard Reference Material (SRM) Urban Dust (1649a); the average recoveries for polycyclic aromatic hydrocarbons (PAHs) from PPF and PUF substrates were 117±8% and 107±11%, respectively. Replicate extractions were also done using the ambient samples collected in Nogales, Arizona. The relative differences between repeat analyses were less than 10% for 47 organic tracer compounds quantified. After the first extraction of ambient samples, less than 7% of organic tracer compounds remained in the extracted substrates. This method can be used to quantify a suite of semi- and non-polar organic tracer compounds suitable for source apportionment studies in 24-h ambient PM samples.  相似文献   

9.
A fast and simple fractionation method was optimized to selectively separate oxy-PAH from polycyclic aromatic hydrocarbons (PAH) and n-alkanes contained in solvent extracted organic matter (SEOM) from atmospheric particles with an aerodynamic diameter ≤2.5 μm (PM2.5). Samples were collected in Mexico City. Multivariate parameters were adjusted on a standard mixture, and on SEOM spiked with pure standard mixture solutions: type and amount of phase; packing densities; type, proportion and amount of solvents, and elution flow rates were tested under several elution schemes. Cyanopropylsilyl-bonded phase material was the selected stationary phase. The separation method was applied to real samples of SEOM (2.6, 5.6 and 8.5 mg) spiked with n-alkanes, PAH and oxy-PAH. n-Alkanes overlapped with PAH due to an excess of n-alkanes in real samples overloading the capacity of the stationary phase. Oxy-PAH was separated totally from n-alkanes and PAH. Mean recoveries ± confidence intervals (95%) for n-alkanes ranged from 53 ± 17% (n-tetracontane) to 101 ± 11% (n-hexacosane); for PAH from 58 ± 5% (phenanthrene) to 85 ± 9% (benzo[k]fluoranthene); and for oxy-PAH from 68 ± 12% (9,10-dihydrobenzo[a]pyren-7(8H)one) to 108 ± 9% (1,2-benzopyrone). This method is an efficient fractionation procedure to be applied to oxy-PAH, PAH and n-alkanes in complex organic mixtures extracted from PM2.5.  相似文献   

10.
Fine and ultrafine particles are probably responsible for numerous health effects, but it is still unclear whether and to what extent the particle itself or organic compounds adsorbed or condensed on the particle are responsible for the effects observed. One important class of particle-bound substances are the polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives. To improve the tools used for chemical characterization of particulate matter analytical methods for the determination of PAH and oxygenated PAH in aerosol samples of different origin have been developed and optimized. PAH on high-volume filters and on soot aerosols were analyzed by using accelerated solvent extraction for extraction and high-performance liquid chromatography with fluorescence detection for separation and quantification. Total PAH concentrations were in the range 0.3–9.3 ng m–3. For analysis of selected oxygenated PAH on high-volume filters a liquid chromatography–tandem mass spectrometric method was developed and optimized. Preliminary investigations showed that oxygenated PAH at pg m–3 concentrations can be determined.  相似文献   

11.
An innovative analytical method based on high-performance liquid chromatography and atmospheric pressure chemical ionization magnetic sector mass spectrometry was developed and optimized to determine trace concentrations of 11 compounds belonging to the group of the seldom-analyzed oxy-PAHs (phenanthrene-9,10-dione, chrysene-5,6-dione, benzo[a]pyrene-4,5-dione, benzo[a]pyrene-1,6-dione, benzo[a]pyrene-3,6-dione, benzo[a]pyrene-6,12-dione, 4-oxa-benzo[def]chrysene-5-one, pyrene-1-carboxaldehyde, benzo[de]anthracene-7-one, benzo[a]anthracene-7,12-dione, and napthacene-5,12-dione) on airborne particulate matter (PM10). The mass spectrometer was operated in multiple ion detection mode, allowing for selective accurate mass detection (mass resolution of 12,000 full width at half maximum) of the oxy-PAHs characteristic ions. Optimization of both the vaporizer (450 °C) and capillary temperature (350 °C) resulted into instrumental detection limits in the range between 7 (benzo[a]pyrene-1,6-dione) and 926 pg (benzo[a]anthracene-7,12-dione). The advanced pressurized liquid extraction (PLE) and the more traditionally used ultrasonic extraction (USE) were compared using ethyl acetate as an extraction solvent. For both techniques, high recoveries from spiked quartz fiber filters (PLE, 82–110%; USE, 67–97%) were obtained. Recoveries obtained from real PM10 samples were also high (76–107%), and no significant matrix effects (ME) on the ionization process (enhancement or suppression) were found (ME, 89–123%). Method limits of quantification (S/N = 10) were in the range between 2 and 336 pg/m3. This method was used to analyze real PM samples collected at several urban and rural locations in the Antwerp area. For the first time, concentrations for Belgium are provided. Concentrations of individual oxy-PAHs are in the lower pictograms per cubic meter to 6 ng/m3 range. High concentration differences between individual compounds are found as exemplified by the 75th percentile of the phenanthrene-9,10-dione and benzo[de]anthracene-7-one concentrations being a factor of 4 to 22 higher compared with the other target oxy-PAHs.  相似文献   

12.
An accurate and reliable method for determining polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols is described. This optimised gas chromatography-mass spectrometry (GC-MS) method permits a wide range of concentrations to be analysed without the influence of interferences.Pre-treatment comparison of four kinds of aerosol collector filters determined that quartz and glass fibre filters were the most suitable. Solvents like cyclohexane, toluene, acetonitrile and dichloromethane were evaluated for their PAH-extraction capacity. Ultrasonic extraction using CH2Cl2 was selected because it is rapid and easy; moreover, this solvent increases the sample-throughput capacity.PAH compounds were quantitatively collected and ultrasonically extracted twice using 15 mL of CH2Cl2 for 15 min for each replicate. Rotavapor concentration, fractionation and dissolution were also optimised.A certified standard mixture (16 EPA PAHs), a deuterated compound and precision recovery assays were used for validating the proposed methodology. Adequate analytical parameters were obtained. Detection limits were (1.6-26.3) × 10−5 ng and quantification limits were (5.2-87.6) × 10−5 ng.Analysis of the environmental samples detected 4-10 EPA list PAH compounds. In addition, 2-11 tentative compounds were found, and their molecular structures were described for the first time.Our study of both Youden method and the standard addition method has shown that the proposed determination of PAHs in environmental samples is free of systematic errors.In conclusion, this unbiased methodology improves the identification and quantification of PAH compounds. High sensitivity as well as acceptable detection and quantification limits were obtained for the environmental applications.  相似文献   

13.
A novel gas chromatography/high resolution mass spectrometry method coupled with multisorbent thermal desorption cartridges has been developed for the determination of volatile neutral polyfluorinated iodine alkanes (PFIs) in airborne samples. It allows, for the first time, simultaneous analysis of four mono-iodized perfluorinated alkanes, three diiodized perfluorinated alkanes and four mono-iodized polyfluorinated telomers in ambient air samples. 3.75 L air sample was passed through a sorbent tube packed with 150 mg of Tenax TA and 200 mg of Carbograph 1TD for analyte adsorption. Important factors during the analysis procedures, such as safe sampling volume, air sampling rate, analyte desorption and transfer strategies, were optimized and good thermal desorption efficiencies were obtained. The method detection limit (MDL) concentration ranged from 0.04 pg/L for 1H,1H,2H,2H-perfluorododecyl iodide to 1.2 pg/L for perfluorohexyl iodide, and instrument response of a seven-point calibration was linear in the range of 10–1000 pg. Travel spike recoveries ranged from 83% to 116%. Small variabilities of less than 36% were obtained near the MDLs and the differences between triplicates were even smaller (2.1–7.3%) at 200 pg spiked level. The method was successfully applied to analyze ambient air samples collected near a point source, and five PFIs were identified (10.8–85.0 pg/L), with none of the analytes detectable at the background site.  相似文献   

14.
This work describes an effective, low solvent consumption and affordable sample preparation approach for the determination of eight UV filters in surface and wastewater samples. It involves sorptive extraction of target analytes in a disposable, technical grade silicone disc (5 mm diameter × 0.6 mm thickness) followed by organic solvent desorption, large volume injection (LVI), and gas chromatography-mass spectrometry determination. Final working conditions involved overnight extraction of 100-mL samples, containing 10% of methanol, followed by analytes desorption with 0.2 mL of ethyl acetate. The method provides linear responses between the limits of quantification (from 0.003 to 0.040 ng mL−1) and 10 ng mL−1, an intra-day precision below 13%, and low matrix effects for surface, swimming pool, and treated sewage water samples. Moreover, the extraction yields provided by silicone discs were in excellent agreement with those achieved using polydimethylsiloxane-covered stir bars. Several UV filters were found in surface and sewage water samples, with the maximum concentrations corresponding to octocrylene.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH) are environmental pollutants which pose a threat to human health even at low concentration levels. In this study, efficient analytical methods for the analysis of nitro-PAH and PAH (extraction, clean-up, chromatographic separation, and spectrometric detection) have been developed, characterized, and applied to aerosol samples. The separation and quantification of 12 nitro-PAH was carried out by reversed-phase high performance liquid chromatography (HPLC), on-line reduction, and fluorescence detection. The detection limits were in the range of 0.03–0.5 g L–1 (6–100 pg in the investigated sample aliquots), and the recovery rates from soot samples were 70–90%. Nitro-PAH and PAH concentrations have been determined for different types of soot and for urban, rural, and alpine fine air particulate matter (PM2.5). For the first time, trace amounts of nitro-PAH have been detected in a high-alpine clean air environment. The on-line reduction and fluorescence technique has been complemented by atmospheric pressure chemical ionization time-of-flight mass spectrometry (APCI-TOF-MS). The MS detection allowed the analysis of partially nitrated and oxygenated PAH in laboratory studies of the heterogeneous reaction of PAH on soot and glass fiber substrates with gaseous nitrogen oxides and ozone. It led to the tentative identification of a previously unknown nitrated derivative of the particularly toxic PAH benzo[a]pyrene (BaP-nitroquinone), and provides the first experimental evidence that PAH-nitroquinones can be formed by reaction of PAH with atmospheric photooxidants.  相似文献   

16.
Nine polycyclic aromatic hydrocarbons (PAHs) contained in air samples collected on quartz fiber filters inside an urban tunnel and in a nearby mixed commercial residential area in the city of Rio de Janeiro, Brazil, were exposed to scrubbed air (to measure desorption loss) and to particle-free ambient air (to measure chemical reaction losses in the absence of desorption). The exposures were conducted for 5.5 to 9 hour periods at ambient temperature (22-26 degrees C) at face velocities typical of high volume sampling. Under prevailing atmospheric conditions all nine PAHs experienced filter losses which (for most of them) followed first order kinetics. For the ambient samples, in a 6 hour exposure period, the following five PAHs showed filter losses (% in parantheses) attributed exclusively to chemical reaction: benzo(b)fluoranthene (43), benzo(k)fluoranthene (39), benzo(a)pyrene (70), benzo(ghi)perylene (44), and indeno (1,2,3-cd)pyrene (41). The other four showed the following unassigned losses: pyrene (100), fluoranthene (65), crysene (72), and benzo(a)anthracene (71). The results are discussed in the light of possible filter artifacts in PAH sampling and the use of PAH profile signatures for source identification of atmospheric particulate matter in receptor modeling.  相似文献   

17.
The application of the thermal desorption (TD) method coupled with gas chromatography–mass spectrometry (GC–MS) to the analysis of aerosol organics has been the focus of many studies in recent years. This technique overcomes the main drawbacks of the solvent extraction approach such as the use of large amounts of toxic organic solvents and long and laborious extraction processes. In this work, the application of an automatic TD–GC–MS instrument for the determination of particle-bound polycyclic aromatic hydrocarbons (PAHs) is evaluated. This device offers the advantage of allowing the analysis of either gaseous or particulate organics without any modification. Once the thermal desorption conditions for PAH extraction were optimised, the method was verified on NIST standard reference material (SRM) 1649a urban dust, showing good linearity, reproducibility and accuracy for all target PAHs. The method has been applied to PM10 and PM2.5 samples collected on quartz fibre filters with low volume samplers, demonstrating its capability to quantify PAHs when only a small amount of sample is available.  相似文献   

18.
Hair analysis has become a powerful tool for the detection of chronic and past drug consumption. For several years, it has been possible to determine even the intake of ethanol in hair samples by detecting the ethanol metabolites ethyl glucuronide or fatty acid ethyl esters. Recently, new requirements were published for the use of EtG as an abstinence test (c EtG < 7 pg/mg) as well as for heavy-drinking detection (c EtG > 30 pg/mg). In order to perform abstinence tests, a sensitive LC-MS/MS procedure has been developed and fully validated according to the guidelines of forensic toxicology. The nine-point calibration curve showed linearity over the range of concentrations from 2–1,000 pg/mg. Detection and quantification limits were 1 and 4 pg/mg respectively. The intra- and inter-day precision and accuracy were always better than 20%. The validated procedure has successfully been applied to perform abstinence tests and to analyze hair samples from persons in withdrawal treatment. Concentrations between <LOQ and 400 pg/mg were determined. In some cases, interfering peaks complicated the quantification to some extent. First results using varied chromatographic conditions showed constituting results. However, modified chromatographic conditions help substantiate critical results, especially if the determined EtG concentration is close to a cut-off value.  相似文献   

19.
A method has been developed for determination of polycyclic aromatic hydrocarbons (PAH) in particulate matter from ambient air and diesel exhaust emissions. It is reproducible and accurate and, compared with similar methods for analysis of individual PAH components in complex matrices, it is relatively fast and simple. Single PAH components can be determined in samples of particulate matter from ambient air and diesel exhaust emissions with LOD of approximately 1 pg/sample. Further, sample throughput is high, because more than 20 samples can be extracted and prepared for analysis in one working (8-h) day. The particulate matter is subjected to ultrasound-assisted extraction, a technique that is shown to extract PAH from particulate material with efficiencies fully comparable with those of Soxhlet extraction. An aliphatic/PAH-enriched fraction is obtained by solid-phase extraction before isolation, separation, and identification/quantification of PAH by on-line liquid chromatography–gas chromatography–mass spectrometry. The method was validated by analysis of US National Institute of Standards and Technology (NIST) Standard Reference Materials (SRM) 1649a, Urban Dust, and 2975, Diesel Particulate Matter. Results from the method are in good agreement with the NIST-certified PAH concentrations and with NIST reference PAH concentrations.  相似文献   

20.
The extraction of n-alkanes, polyaromatic hydrocarbons (naphthalene, methylated naphthalenes, phenanthrene, methylated phenanthrenes, anthracene, and methylated anthracenes) and biomarkers (hopanes) from Posidonia shale by high temperature supercritical fluid (HT-SFE) carbon dioxide extraction has been evaluated, including the relative contributions from thermal desorption and relative comparisons to conventional Soxhlet extraction. These current results confirm those of previous studies indicating a widely differing extractability of strongly and weakly associated hydrocarbons in ancient sediments and the significantly higher recoveries possible using HT-SFE compared to conventional Soxhlet extraction. The present study also demonstrates that these high HT-SFE recoveries are due to true extraction rather than simple thermal desorption and that this procedure is a useful tool to study speciation as well as total extractable hydrocarbons from sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号