首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exact analytical solution of the optical soliton equation with higher-order dispersion and nonlinear effects has been obtained by the method of separating variables. The new type of optical solitary wave solution, which is quite different from the bright and dark soliton solutions, has been found under two special cases. The stability of the solitary wave solutions for the optical soliton equation is discussed. Some new conclusion of the stability are obtained, for the solitary wave solutions of the nonlinear wave equations, by using the Liapunov direct method.  相似文献   

2.
关于多元非线性方程的Broyden方法   总被引:2,自引:0,他引:2  
安恒斌  白中治 《计算数学》2004,26(4):385-400
本文提出了求解多元非线性方程的Broyden方法,讨论了该方法的局部与半局部收敛性,并估计了其超线性收敛速度.数值实验表明,新方法是可行有效的,并且其计算效率高于方向Newton法和方向割线法.  相似文献   

3.
With the aid of Maple symbolic computation and Lie group method, PKPp equation is reduced to some (1 + 1)-dimensional partial differential equations, in which there are linear PDE with constant coefficients, nonlinear PDE with constant coefficients, and nonlinear PDE with variable coefficients. Using the separation of variables, homoclinic test technique and auxiliary equation methods, we obtain new abundant exact non-traveling solution with arbitrary functions for the PKPp.  相似文献   

4.
We present a directional secant method, a secant variant of the directional Newton method, for solving a single nonlinear equation in several variables. Under suitable assumptions, we prove the convergence and the quadratic convergence speed of this new method. Numerical examples show that the directional secant method is feasible and efficient, and has better numerical behaviour than the directional Newton method.  相似文献   

5.
A powerful, easy-to-use analytic technique for nonlinear problems, namely the Homotopy analysis method, is applied to solve the Vakhnenko equation, a nonlinear equation with loop soliton solutions governing the propagation of high-frequency waves in a relaxing medium. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions is obtained, which agrees well with the exact solution. This indicates the validity and great potential of the Homotopy analysis method in solving complicated solitary wave problems.  相似文献   

6.
In this paper,we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method.Based on the modified homogeneous balance method,several kinds of exact(new)solutions of the generalized KdV equation are obtained.  相似文献   

7.
The variational iteration method is applied to solve the cubic nonlinear Schrödinger (CNLS) equation in one and two space variables. In both cases, we will reduce the CNLS equation to a coupled system of nonlinear equations. Numerical experiments are made to verify the efficiency of the method. Comparison with the theoretical solution shows that the variational iteration method is of high accuracy.  相似文献   

8.
In this discussion, a new numerical algorithm focused on the Haar wavelet is used to solve linear and nonlinear inverse problems with unknown heat source. The heat source is dependent on time and space variables. These types of inverse problems are ill-posed and are challenging to solve accurately. The linearization technique converted the nonlinear problem into simple nonhomogeneous partial differential equation. In this Haar wavelet collocation method (HWCM), the time part is discretized by using finite difference approximation, and space variables are handled by Haar series approximation. The main contribution of the proposed method is transforming this ill-posed problem into well-conditioned algebraic equation with the help of Haar functions, and hence, there is no need to implement any sort of regularization technique. The results of numerical method are efficient and stable for this ill-posed problems containing different noisy levels. We have utilized the proposed method on several numerical examples and have valuable efficiency and accuracy.  相似文献   

9.
We study the solvability of mixed value problem for one type of nonlinear partial differential equation, consisting superposition of parabolic and hyperbolic operators. By the method of separation variables we obtain the countable system of nonlinear integral equation. We use the method of successive approximations. It will be proved the convergence of obtained series. We study the continuously dependence of solution from small parameter.  相似文献   

10.
In this work we propose and apply a numerical method based on finite volume relaxation approximation for computing the bed-load sediment transport in shallow water flows, in one and two space dimensions. The water flow is modeled by the well-known nonlinear shallow water equations which are coupled with a bed updating equation. Using a relaxation approximation, the nonlinear set of equations (and for two different formulations) is transformed to a semilinear diagonalizable problem with linear characteristic variables. A second order MUSCL-TVD method is used for the advection stage while an implicit–explicit Runge–Kutta scheme solves the relaxation stage. The main advantages of this approach are that neither Riemann problem solvers nor nonlinear iterations are required during the solution process. For the two different formulations, the applicability and effectiveness of the presented scheme is verified by comparing numerical results obtained for several benchmark test problems.  相似文献   

11.
利用匹配渐近展开法,讨论了一类四阶非线性方程的具有两个边界层的奇摄动边值问题.引进伸长变量,根据边界条件与匹配原则,在一定的可解性条件下,给出了外部解和左右边界层附近的内层解,得到了该问题的二阶渐近解,并举例说明了这类非线性问题渐近解的存在性.  相似文献   

12.
In this paper we propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.  相似文献   

13.
In this paper, we first introduce a new homotopy perturbation method for solving a fractional order nonlinear cable equation. By applying proposed method the nonlinear equation it is changed to linear equation for per iteration of homotopy perturbation method. Then, we solve obtained problems with separation method. In examples, we illustrate that the exact solution is obtained in one iteration by convenience separating of source term in given equation.  相似文献   

14.
Based on the new definition of four classes of Adomian polynomials proposed by Rach in 2008, a MAPLE package of new Adomian-Padé approximate solution for solving nonlinear problems is presented. This package combines the merits of the Adomian decomposition method and the diagonal Padé technique, and may give more accurate solutions of nonlinear problems with strong nonlinearity. Besides, the package is user-friendly and efficient, one only needs to input the initial conditions, governing equation and four optional parameters, then our package will output the analytic approximate solution within a few seconds, where the equation is decomposed into three parts, they are the linear term R, nonlinear term NN and source function g, which are all in functional form. Meanwhile, several graphs generated from the above solutions are displayed and demonstrate a favorable comparison. In this paper, several different types of examples are given to illustrate the validity and promising flexibility of the package. This package provides us with a convenient and useful tool for dealing with nonlinear problems, as well as its electronic version is free to download via the journal website.  相似文献   

15.
This paper presents a new approximate method of Abel differential equation. By using the shifted Chebyshev expansion of the unknown function, Abel differential equation is approximately transformed to a system of nonlinear equations for the unknown coefficients. A desired solution can be determined by solving the resulting nonlinear system. This method gives a simple and closed form of approximate solution of Abel differential equation. The solution is calculated in the form of a series with easily computable components. The numerical results show the effectiveness of the method for this type of equation. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.  相似文献   

16.
给出函数变换,变量分离形式解与第一种椭圆方程相结合的方法,构造了(2+1)维modified Zakharov-Kuznetsov(m ZK)方程的多种复合型新解.步骤一,给出两种函数变换,将(2+1)维m ZK方程转化为能够获得变量分离解的非线性发展方程.步骤二,给出非线性发展方程的变量分离形式解,通过第一种椭圆方程及其相关结论,构造了(2+1)维m ZK方程的双孤子解和双周期解等复合型新解.  相似文献   

17.
We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.  相似文献   

18.
A generalized method, which is called the generally projective Riccati equation method, is presented to find more exact solutions of nonlinear differential equations based upon a coupled Riccati equation. As an application of the method, we choose the higher-order nonlinear Schrodinger equation to illustrate the method. As a result more new exact travelling wave solutions are found which include bright soliton solutions, dark soliton solution, new solitary waves, periodic solutions and rational solutions. The new method can be extended to other nonlinear differential equations in mathematical physics.  相似文献   

19.
In this paper, we present a new approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs). By applying the new method, we have studied the saturable discrete nonlinear Schrodinger equation (SDNLSE) and obtained a number of new exact localized solutions, including discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution and alternating phase bright and dark soliton solution, provided that a special relation is bound on the coefficients of the equation among the solutions obtained.  相似文献   

20.
We consider the Schrödinger–Poisson system in the two-dimensional whole space. A new formula of solutions to the Poisson equation is used. Although the potential term solving the Poisson equation may grow at the spatial infinity, we show the unique existence of a time-local solution for data in the Sobolev spaces by an analysis of a quantum hydrodynamical system via a modified Madelung transform. This method has been used to justify the WKB approximation of solutions to several classes of nonlinear Schrödinger equation in the semiclassical limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号