首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
In the present study, gamma-oryzanol was incorporated into glycerol behenate (Compritol 888 ATO) nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase. Increasing lipid phase concentration resulted in increased consistency and particle diameter of SLNs. Upon storage over 60 days at 4, 25 and 40 °C, the instability was observed by rheological analysis for all samples due to the formation of gelation. Rheological measurement revealed the increase in storage modulus and critical stress during storage at all temperatures. However, at 40 °C, the pronounced instability was observed from the highest increase in storage modulus and a formation of rod-like network structure from scanning electron micrographs. An increase in crystallinity, determined by differential scanning calorimetry, was also found during storage at all temperatures, confirming the instability of SLNs. Particle diameters and zeta potentials of both concentrations at all storage conditions failed to explain the observed instability. These investigations may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.  相似文献   

2.
This study is devoted to preparation of novel solid lipid nanoparticles (SLNs) for the encapsulation of curcumin which is produced by micro-emulsion and ultrasonication using stearic acid and tripalmitin as solid lipids, tween80 and span80 as surfactants. The relation between particle size and entrapment efficiency of the produced SLNs was operated by central composite design (CCD) under response likes surface method (RSM). The variables including the ratio of lipids (X1), the ratio of surfactants (X2), drug/lipid ratio (X3), time of sonication (X4) and time of homogenization (X5). Particle size and entrapment efficiency of the loaded curcumin was justified according to the minimum particle size and maximum entrapment efficiency. The curcumin loaded SLNs presented fairly spherical shape with the mean diameter and entrapment efficiency of 112.0 ± 2.6 nm and 98.7 ± 0.3%, respectively. The optimized SLNs were characterized by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS) and field emission scanning electron microscopy (FESEM). The drug release profile of the optimal formulated material was examined in aqueous media and almost 30% of the curcumin loaded in SLNs was gradually released during 48 h, which reveals efficient prolonged release of the drug.  相似文献   

3.
The purpose of this study was to develop carboxyl multi-wall carbon nanotubes (MWNTs) and unmodified MWNTs loaded with a poorly water-soluble drug, intended to improve the drug loading capacity, dissolubility and study the drug-loading mechanism. MWNTs were modified with a carboxyl group through the acid treatment. MWNTs as well as the resulting functionalized MWNTs were investigated as scaffold for loading the model drug, Carvedilol (CAR), using three different methods (the fusion method, the incipient wetness impregnation method, and the solvent method). The effects of different pore size, specific surface area and physical state were systematically studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The functional MWNTs allowed a higher drug loading than the unmodified preparations. The methods used to load the drug had a marked effect on the drug-loading, dissolution, and physical state of the drug as well as its distribution. In addition, the solubility of the drug was increased when carried by both MWNTs and functional MWNTs, and this might help to improve the bioavailability.  相似文献   

4.
Suspensions of solid lipid nanoparticles (SLNs) stabilized with emulsifiers have been extensively investigated (since the 1990s) as drug carriers, although details of their ultrastructure are poorly defined. Previously, a novel microwave‐assisted microemulsion‐based technique to prepare SLNs was reported. To understand the detailed internal structure of these SLNs, ultra‐small angle neutron scattering (USANS) and small angle neutron scattering (SANS) experiments are conducted on suspensions of hydrogenated stearic acid SLNs stabilized with hydrogenated Tween 20 surfactant in D2O. Together, SANS and USANS gives a combined Q range of 0.000047 to 0.6 Å?1 (corresponding to a size range of ≈1 nm–15 µm). This extended Q range allows a comprehensive understanding of the hierarchical structure of SLNs. The data are consistent with the multi‐length scale structure of SLNs having polydispersed large particles with roughened surfaces at the microscale level. At the nanoscale level, the results are consistent with the SLNs having an ellipsoidal shape intermediate between spheres and rods, with a crossover from mass fractals to surface fractals. The elucidation of this structure is particularly important given that the structure influences the stability and drug release properties of the nanoparticles. These results assist in the development of systems with desired shape and properties.  相似文献   

5.
The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased.  相似文献   

6.
Abstract

Nanoparticles of zinc oxide were synthesized by a solution combustion method. The average size of these particles was analyzed by using X-ray diffraction. Composites of natural rubber and the ZnO nanoparticles were prepared by a latex blending method. The matrix phase was cured by using the crosslinking agent, pentane-1,5-diylidenediamine. Effects of crosslinking and incorporation of nanoparticles on the tensile and solvent transport properties of the natural rubber were studied in detail. The nature of the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was observed from the tensile studies that the addition of the curing agent and the ZnO nanoparticles increased the stability considerably. Incorporation of the nanoparticles also considerably increased the solvent resistance of the cured natural rubber. We suggest the addition of ZnO nanoparticles at a low loading level provided better properties compared to other reinforcements, such as carbon black and nano-clay.  相似文献   

7.
Thermoplastic vulcanizates (TPVs) based on nitrile butadiene rubber (NBR)/ acrylonitrile-butadiene-styrene (ABS) blends were prepared by dynamic vulcanization, and then compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical properties, Mullins effect, and morphological properties of the TPVs were investigated systematically. Experimental results indicated that SBS had an excellent compatibilization effect on the dynamically vulcanized NBR/ABS TPVs. The tensile strength increased from 9.4 to 15.8 MPa and the elongation at break went through a maximum value when the dosage of SBS was only 1 phr. Mullins effect results showed that the compatibilized NBR/ABS TPV had relatively lower residual deformation and internal friction loss than the NBR/ABS TPV, indicating the improvement of elasticity. Morphology studies showed that the vulcanized NBR particles were dispersed evenly in the TPVs and the dimensions of NBR particles were decreased remarkably with the incorporation of SBS compatibilizer.  相似文献   

8.
Thermoplastic vulcanizates (TPVs) based on styrene-butadiene rubber (SBR)/ethylene-vinyl acetate copolymer (EVA)/high-impact polystyrene (HIPS) blends were prepared by dynamic vulcanization, and the TPVs was compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical, dynamic mechanical, and morphological properties of the TPVs were investigated systemically. Experimental results indicate that SBS had a good compatibilization effect on the SBR/EVA/HIPS TPVs. The tensile strength went through a maximum value at a compatibilizer resin content of 6 phr, and the elongation at break and tear strength increased with increasing SBS content. Morphology study shows that the vulcanized SBR particles were dispersed in the HIPS matrices. A rubber process analyzer reveals that the elastic modulus increased with increasing frequency and the incorporation of EVA in the TPVs led to the obvious decrease of elastic modulus; however, the further addition of compatibilizer SBS affected the elastic modulus less. The tan δ decreased continuously with increasing frequency. The addition of SBS in the TPVs led to enhanced hysteresis behavior and relatively high tan δ.  相似文献   

9.
10.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR vol%: 80/20) blends were prepared by melt mixing with various mixing rotation speeds. The effect of mixing technique on microstructure and impact property of blends was studied. Phase structure of the blends was analyzed by scanning electron microscopy (SEM). All of the blends had a heterogeneous morphology. The spherical particles attributed to the PcBR-rich phase were uniformly dispersed in the continuous iPP matrix. With increase of the mixing rotation speed, the dispersed phase particle's diameter distribution became broader and the average diameter of the separated particles increased. The spherulitic morphology of the blends was observed by small angle light scattering (SALS). Higher mixing rotation speed led to a more imperfect spherulitic morphology and smaller spherulites. Crystalline structure of the blends was measured by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The introduction of 20 vol% PcBR induced the formation of iPPβ crystals. Higher rotation speed led to a decrease in microcrystal dimensions. However, the addition of PcBR and the increase of mixing rotation speed did not affect the interplanar distance. The long period values were the same within experimental error as PcBR was added or the mixing rotation speed quickened. The normalized relative degree of crystallinity of the blends slightly increased under lower rotation speeds (30 and 45 rpm) and decreased under higher rotation speeds. The notched Izod impact strength of the blends was enhanced as a result of the increase of mixing rotation speed.  相似文献   

11.
《Current Applied Physics》2010,10(3):766-770
Poly(2-hydroxyethyl methacrylate)/poly(N-vinyl pyrrolidone) (PHEMA/PVP) double networks (DN) were prepared using a sequential method by incorporating a second network of crosslinked PVP into PHEMA. We found that the distributions of the two networks can be regulated just by modulating the morphology of the first network, thus giving expected high water content of these gels. Fourier transform infrared (FTIR) spectroscopy and scanning electronic microscopy (SEM) were used to confirm the structure of the DN. The incorporation of more hydrophilic PVP enhanced swelling ability of these gels. Because of improved hydrophilicity, the PHEMA/PVP DN exhibited higher loading capability for water-soluble substance than that of pure PHEMA, while showed a slower release rate than corresponding HEMA/NVP copolymer hydrogel. It is suggested that the DN gels are potential biomaterials for wound dressing, medical implants and other drug delivery systems.  相似文献   

12.
Energy efficiency (EE) is an important parameter for the next generation cellular communications which is not limited to voice and text messages only. Device-to-Device (D2D) communication is being viewed as a promising technology to support heterogeneous applications involved in future cellular networks. Due to its short range communication, less amount of power is sufficient to make a successful transmission. By exploiting this feature of D2D, this paper proposes an energy-efficient resource allocation scheme for joint uplink/downlink (UL/DL) D2D considering many-to-one matching criterion for channel reuse among users. In this paper, total EE of D2D pairs (DPs) is taken as a performance metric to be optimized subject to quality of service (QoS) satisfaction for cellular users (CUs) within the power budgets of all the users. An iterative scheme is designed for joint channel and power optimization problem. Simulation results show the convergence of joint iterative algorithm and verify significant performance improvement over other schemes.  相似文献   

13.
Ginger (Zingiber officinale) and Licorice (Glycyrrhiza glabra L.) are one of the most popular spices having a wide range of bioactive compounds that have varied biological and pharmacological properties. The study was aimed to extract polyphenols from Himalayan medicinal herbs ginger and licorice in different solvents using ultra-sonication technique. The extraction efficiency (EE) was determined, and the extracts were characterized for physical properties (particle size, colour values), total phenolics, flavonoids, antioxidant properties, and structural and morphological features. Ultra-sonicated ginger in aqueous phase had the highest EE of polyphenols (15.27%) as compared to other solvents. Similar trend was observed in licorice with EE of 30.52 % in aqueous phase followed by ethanol: water (50: 50), and methanol: water (50:50) with 28.52% and 26.39%, respectively. The preliminary screening showed the presence of tannins, phenolics, flavonoids, saponins and carbohydrates, steroids and alkaloids in all the extracts. The phenolic and flavonoid content of dried ginger was found higher in ethanolic extracts compared to fresh ones as revealed by HPLC. Similarly, for licorice, the ethanolic fractions had the highest polyphenolic content. The representative samples of ginger (ethanol: water 75:25 and ethylacetate: water 75:25) and licorice (ethanol: water 70:30 and methanol: water 50:50) were studied for FESEM and particle size. The results showed the agglomerated extract micro-particles with a diameter of 0.5–10 µm and increased particle size (ginger: 547 and 766 nm), and (licorice: 450 and 566 nm). The findings could be beneficial for the advancement of ginger and licorice processing, for the comprehension of these herbs as a source of natural antioxidants in different food formulations.  相似文献   

14.
The present work focused on the effect of the interactions between poly(vinylidene fluoride) (PVDF) chains and solvent molecules on the structure and crystallization behavior of PVDF in films obtained by solution casting. In a single solvent system, the film cast from the good solvent of N,N‐dimethylformamide (DMF), showed dominantly β‐phase crystals with the highest PVDF crystallinity (50.6%) and the largest spherulite size, about 4 μm, at the top surface. The samples deposited from good swelling agents, such as tetrahydrofuran (THF) and methyl ethyl ketone (MEK), exhibited mainly the original α phase with some amount of β‐phase crystals; the crystallization behavior and the morphology of the surface were similar to the original PVDF resin, because of the only partially dissolved PVDF chains in these two solvents. In a mixed solvent system (THF/DMF), the β phase formation linearly increased as the DMF component increased, determined by Fourier transform infrared spectroscopy (FTIR) techniques, owing to increased interactions between PVDF chains and DMF molecules. The film surface consisted of β spherulites with average size of about 3 μm, which were smaller than those grown from pure DMF, because of the increased crystallization rate in the mixed solvent.  相似文献   

15.
The effect of the keratolytic drug salicylic acid (SA) on the thermotropic behaviour, and dynamics of dipalmitoyl phosphatidyl choline (DPPC)–water/buffer pH?7.4 vesicles was studied using DSC and 1H NMR. In both systems, incorporation of SA in DPPC bilayer causes a significant depression in the transition temperature of both the pre-transition (PT) and the gel-to-liquid crystalline (CM) transition. The presence of the drug reduces the cooperativity of both the PT and CM transitions. These findings indicate that SA is bound strongly to the lipid bilayer leading to increased membrane fluidity. The DPPC vesicles incorporated with high drug concentration show phase segregation. One of the interesting findings in this study is the formation of a more ordered high temperature gel (Lβ2) phase when the SA-doped DPPC dispersion is prepared at physiological pH. The effect of inclusion of cholesterol in the SA-free and SA-doped DPPC dispersion was also studied.  相似文献   

16.
17.
The structure and properties of a three‐component system, a poly(acrylamide‐co‐acrylic acid)/poly(vinyl pyrrolidone) [P(AM‐co‐AA)/PVP] polymer blend prepared by dispersion polymerization, were studied. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the resulting P(AM‐co‐AA) microspheres with diameters between 200–300 nm were well‐dispersed in the PVP matrix. Fourier transform infrared spectra (FTIR) showed that intermolecular hydrogen bonding interaction occurred between the dispersed phase and the continuous phase. The mechanical properties of P(AM‐co‐AA)/PVP polymer blends were also determined. With different mass ratios of acrylamide to acrylic acid, it was found that the blends had better mechanical properties with increased AA content.  相似文献   

18.
Compatibilized Cis-1,3-butadiene rubber (BR)/ethylene-vinyl acetate copolymer (EVA)/high-impact polystyrene (HIPS) thermoplastic blend vulcanizates (TPVs) were prepared by dynamic vulcanization, with TPVs being compatibilized by styrene-butadiene-styrene (SBS) block copolymer. The effects of SBS compatibilizer on mechanical, dynamic mechanical, and morphological properties of TPVs were investigated systematically. Experimental results indicated that the dynamically vulcanized BR/HIPS blends did not show an elastomeric behavior when the BR/HIPS blend ratio ranged from 30:70 to 70:30. However, the dynamically vulcanized BR/EVA/HIPS blends compatibilized with SBS showed obvious elastomeric behavior; thus SBS had a good compatibilization effect on BR/EVA/HIPS TPVs. The fractured surface morphology of compatibilized BR/EVA/HIPS TPV was relatively smooth, the interface interaction was strong, and there was no obvious micro-phase separation. BR particles were dispersed evenly in the etched surfaces of BR/EVA/SBS/HIPS TPV. A rubber process analyzer revealed that the storage modulus decreased significantly with increasing strain and the incorporation of compatibilizer SBS in TPVs weakened the Payne effect; the loss modulus showed a pronounced peak and tanδ increased continuously with increasing strain.  相似文献   

19.
Dynamically vulcanized blends based on polyvinylidene fluoride (PVDF)/acrylonitrile butadiene rubber (NBR) were prepared and characterized. The mixing torque and dynamic rheology analyses showed that the NBR phase increased the viscosity of the blends. Scanning electron microscopy (SEM) results showed that the NBR phase was in the form of spherical particles dispersed in the PVDF phase during dynamic vulcanization. Comparing PVDF-rich and NBR-rich blends, the size of the rubber particles in the NBR-rich blends were larger than those in PVDF-rich blends. Differential scanning calorimetry (DSC) results showed that the addition of the NBR phase reduced the PVDF crystallinity and Tm. Thermal gravimetric analysis (TGA) results showed that the dynamically vulcanized PVDF/NBR blends had a higher residual char mass than the neat PVDF and NBR. For PVDF-rich blends, the PVDF can be highly toughened by NBR; the Izod impact strength of the PVDF/NBR (70/30) blend was 77.5 kJ/m2, which was about six times higher than that of pure PVDF. For rubber-rich blends, the PVDF component was beneficial to the mechanical properties of the blends, which can be used as thermoplastic elastomers.  相似文献   

20.
A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe3+/Hep and DS/Fe3+/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe3+/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe3+/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号