首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new mechanism for gas phase ozone-olefin reactions is proposed. The mechanism involves biradical intermediates which can react in a variety of ways. One of the possible reaction modes corresponds to the Criegie mechanism originally proposed to explain solution ozonolysis reactions and generally also accepted in the past for gas phase reactions. However, an examination of the gas phase data on ozone–olefin reactions and of the thermochemical and kinetic requirements for these reactions indicates that the Criegie reaction mode may be the least important of various other reaction possibilities. Those other reaction possibilities involve intramolecular H abstractions and rearrangements in biradical intermediates. The proposed mechanism provides very reasonable explanations for a number of unusual observations on gas phase ozonolysis. These are the formation of peroxidic bound products, aldehyde and 1,2-dicarbonyl product fluorescences, and unexpected carbonyl product formations.  相似文献   

2.
Chemical composition of secondary organic aerosol (SOA) formed from the ozone-initiated oxidation of limonene is characterized by high-resolution electrospray ionization mass spectrometry in both positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) condensed products of oxidation. A combination of high resolving power (m/Deltam approximately 60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the molecular composition of hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O : C ratios of 0.43 and 0.50 determined from the positive and negative ion mode spectra, respectively. A possible reaction mechanism for the formation of the first generation SOA molecular components is considered. The discussed mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene. In addition, it includes isomerization and decomposition pathways for alkoxy radicals resulting from unimolecular decomposition of carbonyl oxides that have been disregarded by previous studies. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy radicals shorten the carbon chain. Together these reactions yield a large number of isomeric products with broadly distributed masses. A qualitative agreement is found between the number and degree of oxidation of the predicted and measured reaction products in the monomer product range.  相似文献   

3.
A record of the time dependence of the difference between two signals, one proportional to the concentration of a reactant or product in one reaction mixture and the other proportional to the concentration of the same or a corresponding substance in another mixture in which the reaction is initiated at the same time as the first, makes it possible to obtain not only the ratio, but also the individual values, of the rate constants for the two reactions. The effects of the experimental variables on a number of measurable parameters are examined, the errors associated with a number of different ways of evaluating the rate constants and their ratio are discussed, and it is shown how conditions can be selected that should provide values whose precisions compare favorably with those attainable by other techniques.  相似文献   

4.
Stoichometric coefficients are found for the reactions of electrogenerated halogens and hexacyanoferrate(III) ions with natural polyphenols, namely, rutin, quercetin, and dihydroquercetin, and also with ascorbic acid. The number of electrons participating in the reactions with hexacyanoferrate(III) matches the number of hydroxyl groups in the analyte molecules, which is reflected by the respective reaction schemes. In the determination of the specified compounds in model solutions, the value of RSD was 0.4–6%. A procedure for the direct quantification of polyphenols in pharmaceuticals by the reaction with hexacyanoferrate is proposed; it is proved applicable for the quality control of medications; RSD does not exceed 7%. The variation of titrants, i.e., iodine and hexacyanoferrate, makes possible the determination of phenols in the presence of ascorbic acid.  相似文献   

5.
The effects of pH on the rates of enzyme-catalyzed reactions are very important because they yield information on the pKs of acidic groups in the enzymatic site and the various enzyme-substrate complexes. But many enzyme-catalyzed reactions produce or consume hydrogen ions in a way that cannot be explained with pKs. These pH effects extend over the whole pH range of interest. In investigating these effects, the rapid-equilibrium assumption is especially useful because a large number of chemical reactions have to be taken into account. In these calculations, all of the reactions up to the rate-determining reaction are treated with biochemical thermodynamics. Kinetic studies make it possible to determine the number of hydrogen ions consumed in the rate-determining reaction, a number that can be in the range of 0-8. It is shown that the experimental limiting velocity of the forward reaction V(fexp) is equal to 10(npH)V(f), where n is a negative integer and Vf varies with pH in the way determined by the pKs of the enzyme-substrate complex that reacts in the rate-determining reaction. A computer program for the initial reaction velocity makes it possible to investigate the rapid-equilibrium kinetics of enzymatic mechanisms that involve the consumption of hydrogen ions.  相似文献   

6.
Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.  相似文献   

7.
Formation of nearly monodiperse MnO nanocrystals by simple heating of Mn stearate in octadecene was studied systematically and quantitatively as a model for non-injection synthesis of nanocrystals. For controlling the shape of the nanocrystals, that is, rice, rods, peanuts, needles, and dots, either an activation reagent (ocadecanol) or an inhibitor (stearic acid) might be added prior to heating. The quantitative results of this typical non-injection system reveal that the formation of nearly monodisperse nanocrystals did not follow the well-known "focusing of size distribution" mechanism. A new growth mechanism, self-focusing enabled by inter-particle diffusion, is proposed. Different from the traditional "focusing of size distribution", self-focusing not only affects the growth process of the nanocrystals, but may also play a role in controlling nucleation. Because of the simplicity of the reaction system, it was possible to also identify the chemical reactions associated with the growth and ripening of MnO nanocrystals with a variety of shapes. Through a recycling reaction path, water was identified as a decisive component in determining the kinetics for both growth and ripening in this system, although the reaction occurred at around 300 degrees C.  相似文献   

8.
The main obstacle to widespread application of single-wall carbon nanotubes is the lack of reproducible synthesis methods of pure material. We describe a new growth method for single-wall carbon nanotubes that uses molecular beams of precursor gases that impinge on a heated substrate coated with a catalyst thin film. In this growth environment the gas and the substrate temperature are decoupled and carbon nanotube growth occurs by surface reactions without contribution from homogeneous gas-phase reactions. This controlled reaction environment revealed that SWCNT growth is a complex multicomponent reaction in which not just C, but also H, and O play a critical role. These experiments identified acetylene as a prolific direct building block for carbon network formation that is an order of magnitude more efficient than other small-molecule precursors. The molecular jet experiments show that with optimal catalyst particle size the incidence rate of acetylene molecules plays a critical role in the formation of single-wall carbon nanotubes and dense vertically aligned arrays in which they are the dominant component. The threshold for vertically aligned growth, the growth rate, the diameter, and the number of walls of the carbon nanotubes are systematically correlated with the acetylene incidence rate and the substrate temperature.  相似文献   

9.
The prevalence of apparently first-order kinetics of reactant disappearance in complex systems with many possible reaction pathways is usually attributed to the dominance of a single rate limiting step. Here, we investigate another possible explanation: that apparently first-order kinetics might arise because the aggregate behavior of many processes, with varying order of reaction and rate constant, approaches a central limit that is indistinguishable from first-order behavior. This hypothesis was investigated by simulating systems of increasing complexity and deriving relationships between the apparent reaction order of such systems and various measures of their complexity. Transformation of a chemical species by parallel irreversible reactions that are zero-, first-, or second-order is found to converge to a central limit as the number of parallel reactions becomes large. When all three reaction orders are represented, on average, in equal proportions, this central limit is experimentally indistinguishable from first-order. A measure of apparent reaction order was used to investigate the nature of the convergence both stochastically and by deriving theoretical limits. The range of systems that exhibit a central limit that is approximately first-order is found to be broad. First-order like behavior is also found to be favored when the distribution of material among the parallel processes (due to differences in rate constants for the individual reactions) is more complex. Our results show that a first-order central limit exists for the kinetics of chemical systems and that the variable controlling the convergence is the physical complexity of reaction systems.  相似文献   

10.
The solvent effect on reactions in solutions is crucial for many systems. In this study, the reaction barrier with respect to the number of solvent molecules included in the system is systematically studied using density function theory calculations. Our results show that the barriers rapidly converge with respect to the number of solvent molecules. The solvent effect is investigated by calculating cisplatin hydrolysis in several types of solvents. The results are analyzed and a linear relationship between the reaction barrier and the interaction strength of solvent-reactants is found. Insight into the general solvent effect is obtained.  相似文献   

11.
A one-pot, three-component process is described which involves both organo- and enzyme-catalysed carbon–carbon bond-forming steps. In the first step, an organocatalyst catalyses the aldol reaction between acetaldehyde and a glyoxylamide. After dilution with additional aqueous buffer, and addition of pyruvate and an aldolase enzyme variant, a second aldol reaction occurs to yield a final product. Crucially, it was possible to develop a reaction in which both the organo- and enzyme-catalysed reactions could be performed in the same aqueous buffer system. The reaction described is the first example of a one-pot, three-component reaction in which the two carbon–carbon bond-forming processes are catalysed using the combination of an organocatalyst and an enzyme.  相似文献   

12.
The traditional experimental practice in enzyme kinetics involves the measurement of substrate or product concentrations as a function of time. Advances in computing have produced novel approaches for modeling enzyme catalyzed reactions from time course data. One example of such an approach is the selection of appropriate chemical reactions that best fit the data. A common limitation of this approach resides in the number of chemical species considered. The number of possible chemical reactions grows exponentially with the number of chemical species, which makes difficult to select reactions that uniquely describe the data and diminishes the efficiency of the methods. In addition, a method’s performance is also dependent on several quantitative and qualitative properties of the time course data, of which we know very little. This information is important to experimentalists as it could allow them to setup their experiments in ways that optimize the network reconstruction. We have previously described a method for inferring reaction mechanisms and kinetic rate parameters from time course data. Here, we address the limitations in the number of chemical reactions by allowing the introduction of information about chemical interactions. We also address the unknown properties of the input data by determining experimental data properties that maximize our method’s performance. We investigate the following properties: initial substrate–enzyme concentration ratios; initial substrate–enzyme concentration variation ranges; number of data points; number of different experiments (time courses); and noise. We test the method using data generated in silico from the Michaelis–Menten and the Hartley–Kilby reaction mechanisms. Our results demonstrate the importance of experimental design for time course assays that has not been considered in experimental protocols. These considerations can have far reaching implications for the computational mechanism reconstruction process.  相似文献   

13.
Sensitivity analysis is an important tool in model validation and evaluation that has been employed extensively in the analysis of chemical kinetic models of combustion processes. The input parameters of a chemical kinetic model are always associated with some uncertainties, and the effects of these uncertainties on the predicted combustion properties can be determined through sensitivity analysis. In this work, first- and second-order global and local sensitivity coefficients of ignition delay time with respect to the scaling factor for reaction rate constants in chemical kinetic mechanisms for combustion of H2, methane, n-butane, and n-heptane are examined. In the sensitivity analysis performed here, the output of the model is taken to be natural logarithm of ignition delay time and the input parameters are the natural logarithms of the factors that scale the reaction rate constants. The output of the model is expressed as a polynomial function of the input parameters, with up to coupling between two input parameters in the present sensitivity analysis. This polynomial function is determined by varying one or two input parameters, and allows the determination of both local and global sensitivity coefficients. The order of the polynomial function in the present work is four, and the factor that scales the reaction rate constant is in the range from 1/e to e, where e is the base of the natural logarithm. A relatively small number of sample runs are required in this approach compared to the global sensitivity analysis based on the highly dimensional model representation method, which utilizes random sampling of input (RS-HDMR). In RS-HDMR, sensitivity coefficients are determined only for the rate constants of a limited number of reactions; the present approach, by contrast, affords sensitivity coefficients for a larger number of reactions. Reactions and reaction pairs with the largest sensitivity coefficients are listed for ignition delay times of four typical fuels. Global sensitivity coefficients are always positive, while local sensitivity coefficients can be either positive or negative. A negative local sensitivity coefficient indicates that the reaction promotes ignition, while a positive local sensitivity coefficient suggests that the reaction actually suppresses ignition. Our results show that important reactions or reaction pairs identified by global sensitivity analysis are usually rather similar to those based on local sensitivity analysis. This finding can probably be attributed to the fact that the values of input parameters are within a rather small range in the sensitivity analysis, and nonlinear effects for such a small range of parameters are negligible. It is possible to determine global sensitivity coefficients by varying the input parameters over a larger range using the present approach. Such analysis shows that correlation effects between an important reaction and a minor reaction can have relatively sizable second-order sensitivity coefficient in some cases. On the other hand, first-order global sensitivity coefficients in the present approach will be affected by coupling between two reactions, and some results of the first-order global sensitivity analysis will be different from those determined by local sensitivity analysis or global sensitivity analysis under conditions where the correlation effects of two reactions are neglected. The present sensitivity analysis approach provides valuable information on important reactions as well as correlated effects of two reactions on the combustion characteristics of a chemical kinetic mechanism. In addition, the analysis can also be employed to aid global sensitivity analysis using RS-HDMR, where global sensitivity coefficients are determined more reliably.  相似文献   

14.
Contrary to widely held opinion, for many reactions in organic and organometallic chemistry it is possible to define nucleophilicity and electrophilicity parameters that are independent of the reaction partners. This phenomenon, discovered by Ritchie during the early 1970s for reactions of highly stabilized carbenium and diazonium ions with n-nucleophiles, also occurs with reactions of carbenium ions with aliphatic and aromatic π-electron systems and in hydride transfer reactions. With the aid of the scales of nucleophilicity and electrophilicity set out here, which extend over eighteen orders of magnitude, forecasts can be made about the feasibility and rate of a given CC bond formation, ionic reduction, or diazo coupling. Linkage with the reactivity scales of Ritchie and Sweigart/Kane-Maguire enables a unified treatment of a large number of polar reactions.  相似文献   

15.
Modern digital methods and powerful computers make it possible to simulate the time behavior of chemical reactions. These calculations can be performed on systems containing an almost unlimited number of elementary reactions. Generally, however, the reaction models used should contain only those elementary reactions which describe the bulk of the conversion. Such a reaction model may be obtained by reduction of the complete set of elementary reactions. Another possibility is analysis of the chemical system starting from conditions ensuring a simple chemistry, which is generally the case at low temperatures and low conversions. The reaction model may then be extended into the range of the reaction variables (temperature, time) of interest. Mathematical simulations may be helpful during the development of the reaction model, and sometimes even decisive. These methods were applied to the pyrolysis of ethylbenzene and n-hexane, and to CO oxidation. They yield information on the reaction paths, the importance of particular elementary reactions, and reaction stability. Furthermore, quantitative data can be obtained concerning the influence of single elementary reactions on the product distribution. The sensitivity matrix shows, e.g., whether the determination of kinetic parameters of an elementary reaction from kinetic data of the overall reaction is possible in principle, and how high the accuracy of the rate constants should be for simulation of the reaction. Both results are important for modeling chemical reactions.  相似文献   

16.
Using Transition-State Theory, experimental rate constants, determined over a range of temperatures, for reactions of Vitamin E type antioxidants are analysed in terms of their enthalpies and entropies of activation. It is further shown that computational methods may be employed to calculate enthalpies and entropies, and hence Gibbs free energies, for the overall reactions. Within the linear free energy relationship (LFER) assumption, that the Gibbs free energy of activation is proportional to the overall Gibbs free energy change for the reaction, it is possible to rationalise, and even to predict, the relative contributions of enthalpy and entropy for reactions of interest, involving potential antioxidants. A method is devised, involving a competitive reaction between *CH3 radicals and both the spin-trap PBN and the antioxidant, which enables the relatively rapid determination of a relative ordering of activities for a series of potential antioxidant compounds, and also of their rate constants for scavenging *CH3 radicals (relative to the rate constant for addition of *CH3 to PBN).  相似文献   

17.
Cascade reactions are useful methods for the construction of polycyclic skeletons, which are important cores for biological activities. A variety of cascade reactions carried out under multiple reaction conditions, such as pericyclic, polar, radical, and transition metal-catalyzed reaction conditions, have been investigated. Culmorin, pentalenene, pentalenic acid, deoxypentalenic acid, longiborneol, cedrandiol, 8,14-cedranoxide, atisirene, atisine, and estrane-type steroids were synthesized via the intramolecular double Michael reaction. Aza double Michael reaction was applied to the syntheses of tylophorine, epilupinine, tacamonine, and paroxetine. Furthermore, sequential Michael and aldol reactions were performed in both intramolecular and intermolecular manners, leading to the formation of polycyclic compounds fused to a four-membered ring. Synthesis of paesslerin A utilizing a multicomponent cascade reaction revealed an error in the proposed structure. Unique cascade reactions carried out under radical and transition metal-catalyzed reaction conditions were also investigated. With the combination of several cascade reactions, serofendic acids and methyl 7beta-hydroxykaurenoate, both of which have neuroprotective activity, were synthesized in a selective manner.  相似文献   

18.
Many different degradation reactions of chlorinated hydrocarbons are possible in natural groundwaters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data are usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4′-DDT  相似文献   

19.
A density functional theory (DFT) study has been conducted in this work to investigate the pyrolysis pathways of propane and n-butane, which are the main components of liquefied petroleum gas (LPG), for better understanding the pyrolysis behavior of LPG in hydrogen thermal plasma. Over 60 possible reactions are considered. The reaction enthalpies and activation energies of these reactions are calculated and analyzed with a Gaussian method of B3LYP and basic set of 6-31G (d,p). A most possible reaction pathway is brought up. According to this reaction pathway, the main products of LPG pyrolysis are acetylene, ethylene, methane, ethane and extra hydrogen. Acetylene mainly comes from the pyrolysis of propylene and ethylene, and hydrogen abstraction reactions are the main source of extra hydrogen gas. Active H· radicals are found to play a very important role in many reactions, and they can remarkably lower the energies needed for reactions.  相似文献   

20.
A reaction prediction program, ROBIA, has been developed. This interactive computer program predicts the products of organic reactions from the starting materials and the reaction conditions, on the basis of the selected transformations within its database. This mechanistic approach generates a large number of products, from which the most important are selected using filters and molecular modeling calculations. The procedure has been applied to the possible biosynthesis pathway of dolabriferol. [reaction: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号