首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
因子模型在刻画潜在因素(因子)与观测变量间的影响关系并进而解释多元观测指标(变量)间的相关性方面具有重要作用.在实际应用中,观测数据往往呈现出时序变异多峰,偏态等特性.将经典的因子分析延伸到带有时齐隐马尔可夫模型的动力因子模型,并建立了半参数贝叶斯分析程序.分块GIBBS抽样器用以后验抽样.经验结果展示所建立的统计程序是有效的.  相似文献   

2.
《数理统计与管理》2018,(2):272-279
结构方程模型是一种含有潜变量的经典统计学模型,被广泛应用于心理学、教育学、经济学、医学等领域。隐马尔可夫模型是一种基于随机过程的统计模型。本文书结构方程模型与隐马尔可夫模型相结合,构造了一种新的模型——隐马尔可夫结构方程模型,详细给出了隐马尔可夫结构方程模型的数学定义。为了对模型的系数进行贝叶斯估计,设定了模型参数的先验分布,然后利用MCMC方法模拟参数的后验分布,计算出了参数的后验均值作为参数的估计值。最后将参数的估计值与真值进行比较,发现估计效果良好。  相似文献   

3.
广义部分线性模型是广义线性模型和部分线性模型的推广,是一种应用广泛的半参数模型.本文讨论的是该模型在线性协变量和响应变量均存在非随机缺失数据情形下参数的Bayes估计和基于Bayes因子的模型选择问题,在分析过程中,采用了惩罚样条来估计模型中的非参数成分,并建立了Bayes层次模型;为了解决Gibbs抽样过程中因参数高度相关带来的混合性差以及因维数增加导致出现不稳定性的问题,引入了潜变量做为添加数据并应用了压缩Gibbs抽样方法,改进了收敛性;同时,为了避免计算多重积分,利用了M-H算法估计边缘密度函数后计算Bayes因子,为模型的选择比较提供了一种准则.最后,通过模拟和实例验证了所给方法的有效性.  相似文献   

4.
VaR和ES是衡量金融资产风险的重要测度,对风险控制和金融危机的识别具有重要意义。本文以CAViaR模型为基础,通过因子隐马尔可夫模型构造潜变量,作为CAViaR模型的回归系数的组成部分,最终提出了一个含潜变量的VaR和ES联合估计方法(FHM-CAViaR),实现了VaR和ES的联合预测。在该模型中,潜变量由一个因子隐马尔可夫模型驱动,可以刻画市场信息对模型系数带来的长期效应与短期冲击,该因子隐马尔可夫模型的引入实现了分位数回归模型参数在上百个状态间的转换。最后,基于本文提出的FHM-CAViaR模型分别对上证综指、深证综指和纳斯达克指数的对数收益率数据进行实证分析。实证结果表明,本文提出的模型具有更优的预测效果。此外实证结果还表明,在危机期间VaR的序列聚集性有着显著的增加。本文提出的模型可以通过潜变量的变化识别市场的机制变换,且能更精确地对金融资产的VaR以及ES进行估计,给出金融风险度量一种新的研究方法。  相似文献   

5.
半参数再生散度模型是再生散度模型和半参数回归模型的推广,包括了半参数广义线性模型和广义部分线性模型等特殊类型.讨论的是该模型在响应变量和协变量均存在非随机缺失数据情形下参数的Bayes估计和基于Bayes因子的模型选择问题.在分析中,采用了惩罚样条来估计模型中的非参数成分,并建立了Bayes层次模型;为了解决Gibbs抽样过程中因参数高度相关带来的混合性差以及因维数增加导致出现不稳定性的问题,引入了潜变量做为添加数据并应用了压缩Gibbs抽样方法,改进了收敛性;同时,为了避免计算多重积分,利用了M-H算法估计边缘密度函数后计算Bayes因子,为模型的选择比较提供了一种准则.最后,通过模拟和实例验证了所给方法的有效性.  相似文献   

6.
半连续数据在经济和社会科学调查中普遍存在.在分析该类数据时,经典两部分回归模型经常被用来刻画协变量对响应变量可变性的影响.然而,包含协变量并不能完全解释响应变量的可变性.忽略未被观测的数据异质性将导致方差的剧烈波动.在本文中,我们将两部分回归模型推广到两部分因子分析模型.多变量半连续数据未观测的异质性由潜在因子部分来解释.此外,通过引入潜在性因子,多重变量间的相依性也以线性组合方式通过共享因子变量得到刻画.在贝叶斯框架内,我们运用马尔可夫链蒙特卡洛(MCMC)方法来进行后验分析.GIBBS采样器被用于从后验分布中抽取样本.基于模拟的随机样本,未知参数估计和模型评价等统计推断问题获得解决.随机模拟和可卡因使用数据分析等实证结果显示了该方法的有效性和实用性.  相似文献   

7.
《数理统计与管理》2014,(5):802-809
近年来,ARMA、GARCH模型的研究一直是金融统计方向研究的热点。但是少有人研究ARFIMA-GARCH模型。因此本文提出ARFuNA(p,d,q)-GARcH(r,s)模型,该模型对r=O,s=O时退化为ARMA类模型,对p=O,q=O,d=O时就退化为GARCH模型,它囊括了时间序列的各种情形的。由于理论和实证表明对各种ARMA、GARCH类模型基于常用分布的似然函数得到的模型估计精度不高,故本文提出了基于贝叶斯方估计的MCMC方法来估计模型参数。这样就充分利用了样本信息和模型参数先验信息,因而具有更小的方差,能得到更精确的估计结果。最后本文以上证综合指数五分钟数据来进行仿真分析,建立了基于MCMC模拟方法的贝叶斯估计的ARFIMA(p,d,q)-GARCH(r,s)模型。数据分析中采用典型的Gibs抽样,基于MCMC模拟1500次,舍弃前100次,得到ARFIMA(1,d,1).GARCH(1,1)各参数的贝叶斯估计,并与传统EVIEWS估计得到的参数相比,发现贝叶斯估计更精确。  相似文献   

8.
结构方程模型在社会学、教育学、医学、市场营销学和行为学中有很广泛的应用。在这些领域中,缺失数据比较常见,很多学者提出了带有缺失数据的结构方程模型,并对此模型进行过很多研究。在这一类模型的应用中,模型选择非常重要,本文将一个基于贝叶斯准则的统计量,称为L_v测度,应用到此类模型中进行模型选择。最后,本文通过一个模拟研究及实例分析来说明L_v测度的有效性及应用,并在实例分析中给出了根据贝叶斯因子进行模型选择的结果,以此来进一步说明该测度的有效性。  相似文献   

9.
本文简单介绍了隐马尔可夫模型,并对半年期银行存款利率建立了隐马尔可夫模型,指明了其所对应的货币政策.  相似文献   

10.
在状态集都有限的情况下,给出了隐马尔可夫模型的一些性质定理.利用马氏链的强极限定理,得到了隐非齐次马尔可夫模型的强大数定律.  相似文献   

11.
杜世平 《大学数学》2004,20(5):24-29
隐马尔可夫模型 ( HMM)是一个能够通过可观测的数据很好地捕捉真实空间统计性质的随机模型 ,该模型已成功地运用于语音识别 ,目前 HMM已开始应用于生物信息学 ( bioinformatics) ,已在生物序列分析中得到了广泛的应用 .本文首先介绍了 HMM的基本结构 ,然后着重讨论了 HMM在 DNA序列的多重比对 ,基因发现等生物序列分析中的应用  相似文献   

12.
基于MCMC模拟的贝叶斯厚尾金融随机波动模型分析   总被引:5,自引:0,他引:5  
针对现有金融时间序列模型建模方法难以刻画模型参数的渐变性问题,利用贝叶斯分析方法构建贝叶斯厚尾SV模型。首先对反映波动性特征的厚尾金融随机波动模型(SV-T)进行贝叶斯分析,构造了基于Gibbs抽样的MCMC数值计算过程进行仿真分析,并利用DIC准则对SV-N模型和SV-T模型进行优劣比较。研究结果表明:在模拟我国股市的波动性方面,SV-T模型比SV-N模型更优,更能反应我国股市的尖峰厚尾的特性,并且证明了我国股市具有很强的波动持续性。  相似文献   

13.
隐马尔可夫模型在语音识别中的应用   总被引:5,自引:0,他引:5  
隐马尔可夫模型(HMM)的基本技术是语音识别中较为成功的算法,主要是它具有较强的对时间序列结构的建模能力。本首先深入浅出地介绍了HMM的基本技术和一个基于HMM的孤立词语音识别系统的构成方法,其次,基于HMM尚存有一些缺陷,造成语音识别能力较弱,为此本又进一步阐述了语音识别应用中的几种改进的HMM系统及目前的热点方法-HMM与ANN构成的混合网络。  相似文献   

14.
基于改进的Cholesky分解,研究分析了纵向数据下半参数联合均值协方差模型的贝叶斯估计和贝叶斯统计诊断,其中非参数部分采用B样条逼近.主要通过应用Gibbs抽样和Metropolis-Hastings算法相结合的混合算法获得模型中未知参数的贝叶斯估计和贝叶斯数据删除影响诊断统计量.并利用诊断统计量的大小来识别数据的异常点.模拟研究和实例分析都表明提出的贝叶斯估计和诊断方法是可行有效的.  相似文献   

15.
针对具有Markov区制转移的、波动均值状态相依的随机波动模型,基于贝叶斯分析,我们推导并给出了对区制转移随机波动模型的MCMC估计方法,其中对参数估计采用Gibbs抽样方法,对潜在对数波动和区制的状态变量估计采用向前滤波、向后抽样的多步移动方法;利用该模型,对我国上证综指周收益率进行了实证分析,发现对沪市波动性有较好的描述,捕捉了波动的时变性、聚类性和非线性特征,同时刻画了沪市的高低波动状态转换过程。  相似文献   

16.
隐马尔可夫模型 (HMM)的基本技术是语音识别中较为成功的算法 .主要是它具有较强的对时间序列结构的建模能力 .本文首先深入浅出地介绍了 HMM的基本技术和一个基于 HMM的孤立词语音识别系统的构成方法 ,其次 ,基于 HMM尚存有一些缺陷 ,造成语音识别能力较弱 ,为此本文又进一步阐述了语音识别应用中的几种改进的 HMM系统及目前的热点方法—— HMM与 ANN构成的混合网络  相似文献   

17.
吴小太  杨卫国 《数学杂志》2011,31(2):314-322
本文研究了一类隐非齐次马尔可夫模型的强极限定理.利用鞅差序列收敛定理,获得了观测链{Y_n,n≥0}的强大数定律,并给出了观测链的Shannon-McMillan定理.  相似文献   

18.
本文研究了隐马尔可夫模型的Viterbi算法,在已知隐马尔可夫模型的部分状态、初始概率分布、状态转移概率矩阵和观测概率矩阵的条件下,由此Viterbi算法给出最优状态序列的估计.相对于已有的算法,本文的算法考虑了部分可见状态对初始条件和递推公式的影响,并且本文的算法能保证预测的状态序列是整体最优的.最后,我们将本文的算法应用于故障识别,从而验证所设计算法的可行性.  相似文献   

19.
零膨胀Poisson回归模型是研究零观测值过多的计数数据的常用工具,本文提出了一类拟合具有这类特征的集群数据的层次零膨胀泊松回归模型,并给出了相应的贝叶斯推断方法,参数估计通过Gibbs抽样获得,模型比较与选择则通过拟合优度检验与BIC准则实现.最后,利用一个船舶受损事故数据来展示本文方法的实现及应用.  相似文献   

20.
对经典隐马尔可夫模型学习算法的改进   总被引:1,自引:0,他引:1  
改进经典隐马尔可夫模型(HMM)的状态转移和输出观测值的假设条件,并在经典隐马尔可夫模型的基础上导出新模型的学习算法.新算法避免了经典隐马尔可夫模型中状态转移概率和输出观测值概率计算时只考虑当前状态而不考虑历史的简单做法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号